• Title/Summary/Keyword: nano pillar

Search Result 49, Processing Time 0.022 seconds

Injection Molding of Hydrophobic Plastic Plates (사출 성형에 의한 소수성 플라스틱 기판 제작)

  • Yoo, Y.E.;Lee, K.H.;Yoon, J.S.;Choi, D.S.;Kim, S.K.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1563-1565
    • /
    • 2008
  • Hydrophobic plastic plates employing nano surface features are injection molded using thermoplastic materials. A variotherm molding process is devised for filling the nano pores and releasing the molded nano features from the master. The size of the molded nano surface features are about 100nm in diameter and 200nm in height. The size of the molded plate is about 30mm x 30mm and the thickness is 1mm. As molding materials, Polypropylene, PMMA, COC and PC are employed, which are all typical commodity thermoplastic materials. The mold temperature(stamper temperature) is investigated as a major processing parameter for molding high aspect ratio nano surface features. Almost fully molded nano features are fabricated above a certain level of mold temperature depends on the employing material. The contact angles on the injection molded plates are measured to estimate the hydrophobicity and found to have higher contact angle up to 180% compared to the blank plate with no surface features.

  • PDF

A New Nanohybrid Photocatalyst between Anatase (TiO2) and Layered Titanate

  • Lee, Hyun-Cheol;Jeong, Hyun;Oh, Jae-Min;Choy, Jin-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.3
    • /
    • pp.477-480
    • /
    • 2002
  • A new microporous TiO2-pillared layered titanate has been successfully prepared by hybridizing the exfoliated titanate with the anatase TiO2 nano-sol. According to the X-ray diffraction analysis and N2 adsorption-desorption isotherms, the TiO2-pillared layered titanate showed a pillar height of ~2 nm with a high surface area of ~460 m2/g and a pore size of ~0.95 nm, indicating that a microporous pillar structure is formed. Its photocatalytic activity was evaluated by measuring the photodegradation rate of 4-chlorophenol during irradiation of catalyst suspensions in an aqueous solution. An enhancement in activity of ca. 170% was obtained for TiO2-pillared layered titanate compared to that of the pristine compound such as layered cesium titanate.

Fabrication of Nano Master with Anti-reflective Surface Using Aluminum Anodizing Process (양극산화공정을 이용한 반사방지 성형용 나노 마스터 개발)

  • Shin, H.;Park, Y.;Seo, Y.;Kim, B.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.697-701
    • /
    • 2009
  • A simple method for the fabrication of porous nano-master for the anti-reflection effect on the transparent substrates is presented. In the conventional fabrication methods for antireflective surface, coating method using materials with low refractive index has usually been used. However, it is required to have a high cost and long processing time for mass production. In this paper, we developed a porous nano-master with anti-reflective surface for the molding stamper of the injection mold, hot embossing and UV imprinting by using the aluminum anodizing process. Through two-step anodizing and etching processes, a porous nano-master with anti-reflective surface was fabricated at the large area. Pattern size Pore diameter and inter-pore distance are about 130nm and 200nm, respectively. In order to replicate anti-reflective structure, hot embossing process was performed by varying the processing parameters such as temperature, pressure and embossing time etc. Finally, antireflective surface can be successfully obtained after etching process to remove selectively silicon layer of AAO master.

  • PDF

나노 임프린트 리소그래피 기술을 이용한 투명 전극 재료의 직접 나노 패턴 형성 기술

  • Yang, Gi-Yeon;Yun, Gyeong-Min;Lee, Heon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.51.1-51.1
    • /
    • 2009
  • 나노 임프린트 리소그래피 기술은 마스터 몰드 표면의 나노 패턴을 물리적인 가열, 가압 공정을 통해 기판 위의 고분자 층으로 전사시키는 기술이다. 이 기술은 기존의 노광 기술과는 다르게 직접적인 접촉을 통해 패턴을 형성하기 때문에 기능성 물질의 직접 패턴 형성이 가능한 기술이다. 투명 전극 재료는 다양한 분야으로의 응용이 가능하기 때문에 많은 연구가 진행되고 있다. ITO는 높은 투과율과 전도성 때문에 대표적인 투명 전극 물질로 사용되고 있다. 본 연구에서는 ITO nano particle solution을 이용하여 thermal 임프린팅 공정을 진행해 ITO nano pattern을 형성하는 연구를 진행하였고 이와 같은 기술을 이용하여 glass와 LED 기판에 ITO nano pillar pattern을 제작하였고 이를 주사 전자 현미경과 UV/vis를 이용하여 형성된 나노 ITO 나노 패턴의 구조와 광학적 특성을 분석하였다.

  • PDF

Nano imprinting lithography fabrication for photonic crystal waveguides (나노 임프린트 공정에 의한 광자결정 도파로 제조공정)

  • Jung Une-Teak;Kim Chang-Soek;Jeong Myung-Yung
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.498-501
    • /
    • 2005
  • Photonic crystals, periodic structure with a high refractive index contrast modulation, have recently become very interesting platform for manipulation of light. The existence of a photonic bandgap, a frequency range in which propagation of light is prevented in all direction, makes photonic crystal very useful in application where spatial localization of light is required for waveguide, beam splitter, and cavity. But fabrication of 3 dimensional photonic crystal is still difficult process. a concept that has recently attracted a lot of attention is a planar photonic crystal based on a dielectric membrane, suspended in the air, and perforated with 2 dimensional lattice of hole. We show that the polymer slabs suspended in air with triangular lattice of air hole can exhibit the in-plane photonic bandgap for TE-like modes. The fabrication of Si master with pillar structure using hot embossing process was investigated for 2 dimensional low-index-contrast photonic crystal waveguide.

  • PDF

Fabrication of Functional ZnO Nano-particles Dispersion Resin Pattern Through Thermal Imprinting Process (ZnO 나노 입자 분산 레진의 thermal imprinting 공정을 통한 기능성 패턴 제작)

  • Kwon, Moo-Hyun;Lee, Heon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.12
    • /
    • pp.1419-1424
    • /
    • 2011
  • Nanoimprint lithography is a next generation lithography technology, which enables to fabricate nano to micron-scale patterns through simple and low cost process. Nanoimprint lithography has been applied in various industry fields such as light emitting diodes, solar cells and display. Functional patterns, including anti-reflection moth-eye pattern, photonic crystal pattern, fabricated by nanoimprint lithography are used to improve overall efficiency of devices in that fields. For these reasons, in this study, sub-micron-scaled functional patterns were directly fabricated on Si and glass substrates by thermal imprinting process using ZnO nano-particles dispersion resin. Through the thermal imprinting process, arrays of sub-micron-scaled pillar and hole patterns were successfully fabricated on the Si and glass substrates. And then, the topography, components and optical property of the imprinted ZnO nano-particles/resin patterns are characterized by Scanning Electron Microscope, Energy-dispersive X-ray spectroscopy and UV-vis spectrometer, respectively.

The Stability Analysis of Near Parallel Tunnels Pillar at Multi-layered Soil with Shallow Depth by Numerical Analysis (수치해석에 의한 저토피 다층지반에서 근접 병설터널 필라의 안정성 분석)

  • Lim, Hyungmin;Son, Kwangrok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.1
    • /
    • pp.53-62
    • /
    • 2014
  • In Korea, in general, separation distance between existing parallel tunnels was set at two to five times as distant as the diameter of the tunnels according to ground conditions. Recently, however, actual applicability of closely spaced parallel tunnels whose distance between tunnel centers was shorter than the diameter has increased due to environmental damages resulting from massive cutting, restriction in purchase of required land, and maintenance of linear continuity. In particular, when the pillar width of tunnel decreases, the safety of pillars affects behaviors of the tunnel and therefore the need for diverse relevant studies has emerged. However, research so far has been largely confined to analysis of behavior characteristics of pillars, or parameters affecting design, and actually applicable and quantitative data have not been presented. Accordingly, in order to present a stability evaluation method which may maximally reflect construction conditions of spots, this study reflected topographical and stratigraphic characteristics of the portal part with the highest closeness between the tunnels, simulated multi-layer conditions with rock mass and complete weathering, and assessed the degree of effect the stability of pillars had on the entire tunnels through numerical analysis according to changes in pillar width by ground strength. This study also presented composite analysis result on ground surface settlement rates, interference volume rates, and average strength to stress and a formula, which may be applicable to actual work, to evaluate safety rates of closely spaced parallel tunnel pillars and minimum pillar width by ground strength based on failure criteria by Hoek-Brown (1980).

Fabrication and Characterization of Superhydrophobic Glass Surfaces Using Silicon Micro-mold and Thermal-reflow Process (실리콘 마이크로 몰드와 유리의 열-재흐름 현상을 이용한 초소수성 유리 표면 제작 및 젖음 특성 평가)

  • Kim, Seung-Jun;Kong, Jeong-Ho;Lee, Dongyun;Kim, Jong-Man
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.8
    • /
    • pp.591-597
    • /
    • 2012
  • This paper presents regularly micro-textured glass surfaces ensuring the superhydrophobic properties in the Cassie-Baxter regime. The proposed surfaces were fabricated simply and efficiently by filling the glass material into a silicon micro-mold with periodic micro-cavities based on a thermal-reflow process, resulting in a successful demonstration of the textured glass surface with periodically-arrayed micro-pillar structures. The static and dynamic wetting properties of the micro-textured glass surfaces were characterized by measuring the static contact angle (SCA) and contact angle hysteresis (CAH), respectively. In addition, the surface wettability was estimated theoretically based on Wenzel and Cassie-Baxter wetting theories, and compared with the experimental ones. Through the experimental and theoretical observations, it was clearly confirmed that the proposed micro-textured glass surfaces showed the slippery superhydrophobic behaviors in the Cassie-Baxter wetting mode.

Nano stamp fabrication for photonic crystal waveguides (나노 광소자용 나노스탬프 제조공정 연구)

  • Jeong, Myung-Yung;Jung, Une-Teak;Kim, Chang-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.16-21
    • /
    • 2005
  • Photonic crystals, periodic structure with a high refractive index contrast modulation, have recently become very interesting platform for the manipulation of light. The existence of a photonic bandgap, a frequency range in which the propagation of light is prevented in all directions, makes photonic crystal very useful in application where the spatial localization of light is required, for example waveguide, beam splitter, and cavity. However, the fabrication of 3 dimensional photonic crystals is still difficult process. A concept that has recently attracted a lot of attention is a planar photonic crystal based on a dielectric membrane, suspended in the air and perforated with two dimensional lattice of hole. The fabrication of Si master with pillar structure using hot embossing process is investigated for two dimensional, low-index-contrast photonic crystal waveguide. From our research we show that the multiple stamp copy process proved to be feasible and useful.

A Study for the Water Droplet on a Stripe-patterned Surface (주기적 줄무늬 구조물 위의 물 액적에 관한 연구)

  • Choi, Ho-Jin;Hong, Seung-Do;Ha, Man-Yeong;Yoon, Hyun-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.2
    • /
    • pp.64-69
    • /
    • 2010
  • We investigated the variation in contact angle of a nano-sized water droplet on a nano stripe-patterned surface using molecular dynamics simulation. By changing the height and width of the stripe pillar, and the gap width of the stripes, we observed the contact angle of water droplet in equilibrium. When the surface energies were 0.1 and 0.3 kcal/mol, the calculated contact angles were in good agreement with the Cassie and Baxter equation. However, when the surface energy is 0.5 kcal/mol, the contact angles are observed to be perturbed along the Cassie and Baxter equation.