• Title/Summary/Keyword: nano phosphor

Search Result 77, Processing Time 0.024 seconds

Nano phosphors for PDP RGB and their PL characteristics

  • Yang, Choong-Jin;Choi, S.D.;Park, E.B.;Park, J.I.;Lee, Y.J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1646-1649
    • /
    • 2007
  • RF plasma and aerosol nano process were developedfor a volume production of nanoscale phosphors. R, G, and B PDP phosphors were synthesized and the characteristics were optimized through the proprietary power treatments. PL intensities were confirmed to be enhanced up to 70% of that of present commercial phosphors.

  • PDF

Fabrication and characterization of nano phosphor using ultrafine $Y_2O_3:EU^{3+}$ particles (초미세 $Y_2O_3:EU^{3+}$ 분말을 이용한 나노 형광체의 제조 및 특성 평가)

  • Hong, Sung-Jei;Kwak, Min-Gi;Cho, Kyoon-Woo;Kim, Won-Geun;Moon, Dae-Gyu;Han, Jeong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1062-1065
    • /
    • 2003
  • 본 연구에서는 초미세 $Y_2O_3:EU^{3+}$ 분말을 이용하여 나노 형광체를 제조하였다. 나노 형광체는 소량의 Eu가 도핑된 $Y_2O_3$ 재질로 구성되어 있다. 형광체 분말의 결정화를 위해 $500{\sim}900^{\circ}C$의 온도로 열처리하였다. 제조된 나노 형광체를 HRTEM으로 관찰한 결과 입자 크기가 열처리 온도에 따라 약 $4{\sim}30nm$의 분포를 나타내었다. 또한 XRD로 결정상을 분석한 결과 주로 입방정 구조로 되어 있고 소량의 단사정 구조가 포함된 $Y_2O_3$ peak가 검출되었다. EDS 분석 결과 약 $6.7{\sim}7.5%$의 Eu가 검출되었다. 약 4nm 크기의 $Y_2O_3:EU^{3+}$ 분말로 제조한 나노 형광체의 발광 특성은 주요 파장대가 612nm인 PL spectrum이 관찰되어, 적색 형광체로서의 $Y_2O_3:EU^{3+}$ 나노 분말이 제조되었다.

  • PDF

Luminescence properties of novel Sr-Y-Si-Oxynitride yellow phosphor for LED applications (LED용 Sr-Y-Si-계 산질화물 황색 형광체의 발광 특성)

  • Jeong, Ok Geun;Park, Jong Cheon;Ryu, Jeong Ho;Cho, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.4
    • /
    • pp.195-200
    • /
    • 2013
  • Novel Sr-Y-Si-Oxynitride yellow phosphors were synthesized and the effect of calcination temperature, reduction temperature and $Eu^{2+}$ concentration on their luminescence properties were studied. Optimal temperature conditions were found to be $1400^{\circ}C$ and $1300^{\circ}C$ for solid-state reaction and reduction, respectively. The synthesized $Ba_9Y_{2+y}Si_6O_{24-3y}N_{3y}:Eu^{2+}$ phosphors showed a single intense broadband emission in the range of 571~587 nm for 450 nm excitation light source. The highest luminescence intensity was obtained with Eu concentration of 3 mol% and concentration quenching was observed beyond 5 mol%. FE-SEM and PSA showed that the synthesized phosphors consists of particles with an average size of ${\sim}8.2{\mu}m$.

Zn2SiO4:Mn Phsophor Particles Prepared by Flame Spray Pyrolysis (화염분무열분해 공정에 의해 합성되어진 Zn2SiO4:Mn 형광체)

  • Kang Y. C.;Sohn J. R.;Jung K. Y.
    • Korean Journal of Materials Research
    • /
    • v.14 no.8
    • /
    • pp.600-606
    • /
    • 2004
  • $Zn_{2}SiO_{4}:Mn$ phosphor particles were prepared by a flame spray pyrolysis method. It has been generally known that the high-temperature flame enables fast drying and decomposition of droplets. In the present investigation, the morphology and luminescent property of $Zn_{2}SiO_{4}:Mn$ phosphor were controlled in a severe flame preparation condition. The particle formation in the flame spray pyrolysis process was achieved by the droplet-to-particle conversion without any evaporation of precursors, which made it possible to obtain spherical $Zn_{2}SiO_{4}:Mn$ particles of a pure phase from a droplet. Using colloidal solutions wherein dispersed nano-sized silica particles were adopted as a silicon precursor. $Zn_{2}SiO_{4}:Mn$ particles with spherical shape and filled morphology were prepared and the spherical morphology was maintained even after the high-temperature heat treatment, which is necessary to increase the photoluminescence intensity. The $Zn_{2}SiO_{4}:Mn$ particles with spherical shape, which were prepared by the flame spray pyrolysis and posttreated at $1150^{\circ}C$, showed good luminescent characteristics under vacuum ultraviolet (VUV) excitation.

The Characteristics of YAG:Ce Phosphor Powder Prepared Using a NO3--Malonic Acid-NH4NO3-NH3·H2O System

  • Jeong, Jin-An;Park, Kyung-Hwan;Lee, Dong-Hoon;Kim, Hong-Gun;Kim, Yoo-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1141-1146
    • /
    • 2012
  • Ce-doped $Y_3Al_5O_{12}$ (YAG:Ce) phosphor powder was prepared using a ${NO_3}^-$-malonic acid-$NH_4NO_3-NH_3{\cdot}H_2O$ system. The YAG:Ce precursor was ignited at $240^{\circ}C$ and the resulting powder contained YAG:Ce crystallites (42%) - active in the visible region at 460 nm - amorphous particles (53%) - inactive at visible wavelengths - and less than 3% oxide (3%) crystallite impurities. The impurities transformed to acitive YAG:Ce crystallites at above $800^{\circ}C$. At above $1000^{\circ}C$, the amorphous phase became YAG phase and isolated $Ce_2O$ crystallites emerged. The powder particles comprised < $4{\mu}m$ secondary aggregates of 20 nm primary particles. The thermal dusting of the secondary particles coincided with the aggregation of the secondary particles at above $900^{\circ}C$.

Characteristics of BaMgAl10O17:Eu Phosphor Powders Prepared from Spray Solution with Organic Additives and NH4Cl Flux (유기 첨가제 및 NH4Cl 융제를 함유하는 분무용액으로부터 합성된 BaMgAl10O17:Eu 형광체의 특성)

  • Lee, Sang Ho;Koo, Hye Young;Ko, Da Rae;Lee, Su Min;Kang, Yun Chan
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.75-79
    • /
    • 2010
  • The precursor powders with thin wall structure were prepared by spray pyrolysis from the spray solution with ethylenediaminetetraacetic acid, citric acid and $NH_4Cl$ flux. The $BaMgAl_{10}O_{17}:Eu$ phosphor powders formed from the spray solution without organic additives and flux material had sizes of $1{\sim}5{\mu}m$ and hollow structure with high thickness at post-treatment temperature of $1,200^{\circ}C$. However, $BaMgAl_{10}O_{17}:Eu$ phosphor powders formed from the spray solution with ethylenediaminetetraacetic acid, citric acid and $NH_4Cl$ flux had fine size and plate-like shape. The mean crystallite sizes of the phosphor powders with fine sizes were 23, 35, and 33 nm when the content of $NH_4Cl$ flux were 0, 6, 35 wt% of phosphor. The photoluminescence intensity of the phosphor powders formed from the spray solution with the optimum amount of $NH_4Cl$ flux as 35 wt% was 215% of that of the phosphor powders formed from the spray solution without flux material.

Properties of Working Electrodes with Nano YBO3:Eu3+ Phosphor in a Dye Sensitized Solar Cell

  • Noh, Yunyoung;Choi, Minkyoung;Kim, Kwangbae;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.253-257
    • /
    • 2016
  • We added 0 ~ 5 wt% $YBO_3:Eu^{3+}$ nano powders in a scattering layer of a working electrode to improve the energy conversion efficiency (ECE) of a dye sensitized solar cell (DSSC). FESEM and XRD were used to characterize the microstructure and phase. PL and micro Raman were used to determine the fluorescence and the composition of $YBO_3:Eu^{3+}$ phosphor. A solar simulator and a potentiostat were used to confirm the photovoltaic properties of the DSSC with $YBO_3:Eu^{3+}$. From the results of the microstructure and phase of the fabricated $YBO_3:Eu^{3+}$ nano powders, we identified $YBO_3:Eu^{3+}$ having particle size less than 100 nm. Based on the microstructure and micro Raman results, we confirmed the existence of $YBO_3:Eu^{3+}$ in the scattering layer and found that it was dispersed uniformly. Through photovoltaic properties results, the maximum ECE was shown to be 5.20%, which can be compared to the value of 5.00% without $YBO_3:Eu^{3+}$. As these results are derived from conversion of light in the UV range into visible light by employing $YBO_3:Eu^{3+}$ in the scattering layer, these indicate that the ECE of a DSSC can be enhanced by employing an appropriate amount of $YBO_3:Eu^{3+}$.

디스플레이 고색 재현 형광 소재 기술

  • Choe, Seong-U;Kim, Seong-Min;O, Jeong-Rok;Yun, Cheol-Su
    • Ceramist
    • /
    • v.21 no.1
    • /
    • pp.55-63
    • /
    • 2018
  • Recently, display technology has been focused in regard with with color reproduction, contrast ratio, image resolution and color bit. Among these technologies, the color reproducibliity of White, Red, Green, and Blue is associated with the TV plaform and is expressed as a major technology. Major TV platforms are divided into three categories since 2015, including LCD-based phosphor coverted LED BLU technology, QD sheet technology using nano-sized quantum dots, and OLED technology. In this paper, we describe the color reproducibility definition and background, luminescent materials with wide color gamut, color reproducibility of TV display performance, and discuss about next luminescent materials.

Synthesis and photoluminescence characteristics of SrAl2O4:Mn4+ phosphor for LED applications (LED용 SrAl2O4:Mn4+ 형광체 합성 및 발광특성 연구)

  • Byoung Su Choi;Jun Ho Lee;Sungu Hwang;Jin Kon Kim;Byeong Woo Lee;Hyun Cho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.1
    • /
    • pp.1-16
    • /
    • 2023
  • A non-rare earth-based strontium-aluminate red light emitting phosphor was synthesized by a solid-state reaction method and the effect of synthesis temperature and Mn4+ activator concentration on the photoluminescence characteristics of the phosphor was studied. The synthesized SrAl2O4:Mn4+ phosphor showed broad band absorption characteristics in the near-ultraviolet and blue regions with peaks at wavelengths of near 330 and 460 nm, and a triple band deep red emission consisted of three peaks at near 644, 658, and 673 nm. The SrAl2O4:Mn4+ phosphor synthesized at a temperature 1600℃ and a Mn4+ activator concentration of 0.5 mol% showed the strongest PL emission intensity, and concentration quenching was observed at concentrations higher than 0.7 mol%. FE-SEM and DLS particle size distribution analysis showed that the synthesized SrAl2O4:Mn4+ phosphor had a particle size distribution of 2~6.4 ㎛ and an irregular spherical shape with an average particle size of ~4 ㎛.

The effect of thickness on luminous properties of ceramic phosphor plate for high-power LD (고출력 LD 용 형광체 세라믹 플레이트의 두께에 따른 광학 특성)

  • Ji, Eun Kyung;Lee, Chul Woo;Song, Young Hyun;Jeong, Byung Woo;Jung, Mong Kown;Yoon, Dae-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.2
    • /
    • pp.80-83
    • /
    • 2016
  • In the present paper, garnet structured $Y_3Al_5O_{12}:Ce^{3+}$ (YAG : Ce) ceramic phosphor plate (CPP) for high power laser diode (LD) was prepared and optical properties were analyzed. We synthesized monodispersed spherical nano-sized YAG : Ce particles by liquid phase method, fabricated phosphor ceramic plate with the addition of $Al_2O_3$. $75{\mu}m$ and $100{\mu}m$ thick YAG : Ce CPPs were compared in terms of the factors of conversion efficacy, thermal quenching, luminance and correlated color temperature (CCT). In conclusion, conversion efficacy decreased by 25 % in both samples and $100{\mu}m$ thick sample provides better optical properties of thermal quenching, maximum light conversion efficacy and maximum luminance value.