• 제목/요약/키워드: nano pattern

검색결과 480건 처리시간 0.027초

잉크젯 프린팅된 은(Ag) 박막의 등온 열처리에 따른 미세조직과 전기 비저항 특성 평가 (Microstructure and Electrical Resistivity of Ink-Jet Printed Nanoparticle Silver Films under Isothermal Annealing)

  • 최수홍;정정규;김인영;정현철;정재우;주영창
    • 한국재료학회지
    • /
    • 제17권9호
    • /
    • pp.453-457
    • /
    • 2007
  • Interest in use of ink-jet printing for pattern-on-demand fabrication of metal interconnects without complicated and wasteful etching process has been on rapid increase. However, ink-jet printing is a wet process and needs an additional thermal treatment such as an annealing process. Since a metal ink is a suspension containing metal nanoparticles and organic capping molecules to prevent aggregation of them, the microstructure of an ink-jet printed metal interconnect 'as dried' can be characterized as a stack of loosely packed nanoparticles. Therefore, during being treated thermally, an inkjet-printed interconnect is likely to evolve a characteristic microstructure, different from that of the conventionally vacuum-deposited metal films. Microstructure characteristics can significantly affect the corresponding electrical and mechanical properties. The characteristics of change in microstructure and electrical resistivity of inkjet-printed silver (Ag) films when annealed isothermally at a temperature between 170 and $240^{\circ}C$ were analyzed. The change in electrical resistivity was described using the first-order exponential decay kinetics. The corresponding activation energy of 0.44 eV was explained in terms of a thermally-activated mechanism, i.e., migration of point defects such as vacancy-oxygen pairs, rather than microstructure evolution such as grain growth or change in porosity.

현미경, Flow Cytometer, HPLC 색소자료 및 원격탐사를 이용한 이어도 관측기지 주변수의 식물플랑크톤 연구 (Phytoplankton in the Waters of the Ieodo Ocean Research Station Determined by Microscopy, Flow Cytometry, HPLC Pigment Data and Remote Sensing)

  • 노재훈;유신재;이정아;김현철;이재학
    • Ocean and Polar Research
    • /
    • 제27권4호
    • /
    • pp.397-417
    • /
    • 2005
  • Phytoplankton community structure and distribution pattern in the surface water around the Ieodo Ocean Research Station were investigated during seven cruises carried out from July, 2003 to October, 2004. Samples were analyzed using various tools including a microscope, flow cytometer, and HPLC. Satellite images were used to analyze spatio-temporal phytoplankton biomass distribution. SeaWiFS chlorophyll a (chl a) images showed that spring blooms occurred in April-May near the Ieodo Station, and these waters were under the influence of Changjiang Dilute Water during July-October. Also, during the July-October period, HPLC pigments data showed increasing zeaxanthin concentrations, a marker pigment of cyanobacteria whereas increasing concentrations of various other pigments such as fucoxanthin, peridinin, prasinoxanthia alloxanthin, 19'-hexanoyloxyfucoxanthin and chlorophyll b were noted during spring blooms. Such pigment marker data were consistent with picoplankton data analyzed by flow cytometer and nano-microplankton analyzed by microscope. The pigment-CHEMTAX method was used to drive the phytoplankton group apportioned chi a. Diatoms, chlorophytes, dinoflagellates, and cryptophytes comprised 25.8, 20.7, 15.9, and 14.1%, respectively, of the total chl a in May. Average cyanobacteria concentrations in July-October contributed 25.4% of the total concentration. This was the highest percent contribution and was followed by chlorophytes, diatoms, and prymnesiophytes. This study discusses results from various methods, similarities and differences in the results among those methods, and the application range of the results from different analytical methods. Also, the study reveals a detailed phytolpankton community structure in the waters around the Ieodo Station, and suggests future monitoring considerations in relation to cell morphology, ecology and diversity factors according to taxonomic groups.

SiGe Nanostructure Fabrication Using Selective Epitaxial Growth and Self-Assembled Nanotemplates

  • Park, Sang-Joon;Lee, Heung-Soon;Hwang, In-Chan;Son, Jong-Yeog;Kim, Hyung-Jun
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.24.2-24.2
    • /
    • 2009
  • Nanostuctures such as nanodot and nanowire have been extensively studied as building blocks for nanoscale devices. However, the direct growth of the nanostuctures at the desired position is one of the most important requirements for realization of the practical devices with high integrity. Self-assembled nanotemplate is one of viable methods to produce highly-ordered nanostructures because it exhibits the highly ordered nanometer-sized pattern without resorting to lithography techniques. And selective epitaxial growth (SEG) can be a proper method for nanostructure fabrication because selective growth on the patterned openings obtained from nanotemplate can be a proper direction to achieve high level of control and reproducibility of nanostructucture fabrication. Especially, SiGe has led to the development of semiconductor devices in which the band structure is varied by the composition and strain distribution, and nanostructures of SiGe has represented new class of devices such nanowire metal-oxide-semiconductor field-effect transistors and photovoltaics. So, in this study, various shaped SiGe nanostructures were selectively grown on Si substrate through ultrahigh vacuum chemical vapor deposition (UHV-CVD) of SiGe on the hexagonally arranged Si openings obtained using nanotemplates. We adopted two types of nanotemplates in this study; anodic aluminum oxide (AAO) and diblock copolymer of PS-b-PMMA. Well ordered and various shaped nanostructure of SiGe, nanodots and nanowire, were fabricated on Si openings by combining SEG of SiGe to self-assembled nanotemplates. Nanostructure fabrication method adopted in this study will open up the easy way to produce the integrated nanoelectronic device arrays using the well ordered nano-building blocks obtained from the combination of SEG and self-assembled nanotemplates.

  • PDF

천연 향균물질 함유 나노섬유의 제조 및 특성분석 (Preparation and Characterization of Electrospun Nanofibers Containing Natural Antimicrobials)

  • 김영진;김상남;권오경;박미란;강인규;이세근
    • 폴리머
    • /
    • 제33권4호
    • /
    • pp.307-312
    • /
    • 2009
  • 전기방사법으로 식물성 폴리페놀을 함유하는 PHBV 나노섬유를 제조하였으며, 얻어진 나노섬유의 평균직경은 340-450 nm였다. 폴리페놀의 첨가에 의해 나노섬유의 직경이 증가하였으며 폴리페놀의 첨가량도 나노섬유의 직경 변화에 영향을 미쳤다. 이는 PHBV와 폴리페놀 사이의 수소결합에 기인하는 것으로 확인되었다. 제조된 나노섬유를 이용한 ATR-FTIR 분석 결과 PHBV와 폴리페놀 사이에 수소결합이 존재하는 것을 확인할 수 있었고, XRD 분석 결과 폴리페놀의 첨가에 의해 PHBV 나노섬유의 결정성이 높아졌다. 이들 폴리페놀을 함유하는 나노섬유는 우수한 항균특성을 보였다.

지오스트립/샌드페이퍼 계면에서의 마찰특성 평가 (Evaluation of Friction Properties between Geostrip/Sandpaper Interface)

  • 임지혜;변성원;전한용
    • 한국지반신소재학회논문집
    • /
    • 제5권4호
    • /
    • pp.27-33
    • /
    • 2006
  • 흙 입자의 크기를 고려한 5종류의 샌드페이퍼를 사용하여 지오스트립/샌드페이퍼 계면에서의 마찰특성을 평가하였으며, 전단력에 의한 마찰계수와 마찰각 등을 구하였다. 설계강도가 각각 50, 70, 100KN/m인 3종류의 지오스트립이 사용되었으며, 입자 크기가 각각 P100, 220, 320, 400, 600인 5종류의 샌드페이퍼가 사용되었다. 지오스트립의 설계강도에 따라 전단강도는 큰 차이를 나타내지 않았으며, 이는 전단 시 접촉되는 지오스트립 표면이 강도에 따라 차이가 나지 않고 비슷하기 때문이다. 샌드페이퍼의 입자의 크기가 클수록 더 큰 전단강도 값을 나타내었으며, 지오스트립/P100 계면에서 가장 큰 값을 나타내었다. 끝으로 모든 시료의 경우 post-peak 강도 감소 현상이 나타났으며, 이는 전단 시험에 의한 지오스트립 표면 의 마모에 기인한다.

  • PDF

Investigating the Morphology and Kinetics of Three-Dimensional Neuronal Networks on Electro-Spun Microstructured Scaffolds

  • Kim, Dongyoon;Kim, Seong-Min;Kang, Donghee;Baek, Goeun;Yoon, Myung-Han
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.277.2-277.2
    • /
    • 2013
  • Petri dishes and glass slides have been widely used as general substrates for in vitro mammalian cell cultures due to their culture viability, optical transparency, experimental convenience, and relatively low cost. Despite the aforementioned benefit, however, the flat two-dimensional substrates exhibit limited capability in terms of realistically mimicking cellular polarization, intercellular interaction, and differentiation in the non-physiological culture environment. Here, we report a protocol of culturing embryonic rat hippocampal neurons on the electro-spun polymeric network and the results from examination of neuronal cell behavior and network formation on this culture platform. A combinatorial method of laser-scanning confocal fluorescence microscopy and live-cell imaging technique was employed to track axonal outgrowth and synaptic connectivity of the neuronal cells deposited on this model culture environment. The present microfiber-based scaffold supports the prolonged viability of three-dimensionally-formed neuronal networks and their microscopic geometric parameters (i.e., microfiber diameter) strongly influence the axonal outgrowth and synaptic connection pattern. These results implies that electro-spun fiber scaffolds with fine control over surface chemistry and nano/microscopic geometry may be used as an economic and general platform for three-dimensional mammalian culture systems, particularly, neuronal lineage and other network forming cell lines.

  • PDF

Taguchi method-optimized roll nanoimprinted polarizer integration in high-brightness display

  • Lee, Dae-Young;Nam, Jung-Gun;Han, Kang-Soo;Yeo, Yun-Jong;Lee, Useung;Cho, Sang-Hwan;Ok, Jong G.
    • Advances in nano research
    • /
    • 제13권2호
    • /
    • pp.199-206
    • /
    • 2022
  • We present the high-brightness large-area 10.1" in-cell polarizer display panel integrated with a wire grid polarizer (WGP) and metal reflector, from the initial design to final system development in a commercially feasible level. We have modeled and developed the WGP architecture integrated with the metal reflector in a single in-cell layer, to achieve excellent polarization efficiency as well as brightness enhancement through the light recycling effect. After the optimization of key experimental parameters via Taguchi method, the roll nanoimprint lithography employing a flexible large-area tiled mold has been utilized to create the 90 nm-pitch polymer resist pattern with the 54.1 nm linewidth and 5.1 nm residual layer thickness. The 90 nm-pitch Al gratings with the 51.4 nm linewidth and 2150 Å height have been successfully fabricated after subsequent etch process, providing the in-cell WGPs with high optical performance in the entire visible light regime. Finally we have integrated the WGP in a commercial 10.1" display device and demonstrated its actual operation, exhibiting 1.24 times enhancement of brightness compared to a conventional film polarizer-based one, with the contrast ratio of 1,004:1. Polarization efficiency and transmittance of the developed WGPs in an in-cell polarizer panel achieve 99.995 % and 42.3 %, respectively.

A machine learning-based model for the estimation of the critical thermo-electrical responses of the sandwich structure with magneto-electro-elastic face sheet

  • Zhou, Xiao;Wang, Pinyi;Al-Dhaifallah, Mujahed;Rawa, Muhyaddin;Khadimallah, Mohamed Amine
    • Advances in nano research
    • /
    • 제12권1호
    • /
    • pp.81-99
    • /
    • 2022
  • The aim of current work is to evaluate thermo-electrical characteristics of graphene nanoplatelets Reinforced Composite (GNPRC) coupled with magneto-electro-elastic (MEE) face sheet. In this regard, a cylindrical smart nanocomposite made of GNPRC with an external MEE layer is considered. The bonding between the layers are assumed to be perfect. Because of the layer nature of the structure, the material characteristics of the whole structure is regarded as graded. Both mechanical and thermal boundary conditions are applied to this structure. The main objective of this work is to determine critical temperature and critical voltage as a function of thermal condition, support type, GNP weight fraction, and MEE thickness. The governing equation of the multilayer nanocomposites cylindrical shell is derived. The generalized differential quadrature method (GDQM) is employed to numerically solve the differential equations. This method is integrated with Deep Learning Network (DNN) with ADADELTA optimizer to determine the critical conditions of the current sandwich structure. This the first time that effects of several conditions including surrounding temperature, MEE layer thickness, and pattern of the layers of the GNPRC is investigated on two main parameters critical temperature and critical voltage of the nanostructure. Furthermore, Maxwell equation is derived for modeling of the MEE. The outcome reveals that MEE layer, temperature change, GNP weight function, and GNP distribution patterns GNP weight function have significant influence on the critical temperature and voltage of cylindrical shell made from GNP nanocomposites core with MEE face sheet on outer of the shell.

비정형 기둥 형상을 가진 나노구조에서의 가스 투과성 실험 연구 (Permeability of the Lateral Air Flow through Unstructured Pillar-like Nanostructures)

  • 김혜원;임혜원;박정우;이상민;김형모
    • Tribology and Lubricants
    • /
    • 제39권5호
    • /
    • pp.197-202
    • /
    • 2023
  • Recently, research on experimental and analytical techniques utilizing microfluidic devices has been pursued. For example, lab-on-a-chip devices that integrate micro-devices onto a single chip for processing small sample quantities have gained significant attention. However, during sample preparation, unnecessary gases can be introduced into the internal channels, thus, impeding device flow and compromising specific function efficiency, including that of analysis and separation. Several methods have been proposed to mitigate this issue, however, many involve cumbersome procedures or suffer from complexities owing to intricate structures. Recently, some approaches have been introduced that utilize hydrophobic device structures to remove gases within channels. In such cases, the permeability of gases passing through the structure becomes a crucial performance factor. In this study, a method involving the deposition and sintering of diluted Ag-ink onto a silicon wafer surface is presented. This is followed by unstructured nano-pattern creation using a Metal Assisted Chemical Etching (MACE) process, which yields a nanostructured surface with unstructured pillar shapes. Subsequently, gas permeability in the spaces formed by these surface structures is investigated. This is achieved by experiments conducted to incorporate a pressure chamber and measure gas permeability. Trends are subsequently analyzed by comparing the results with existing theories. Finally, it can be confirmed that the significance of this study primarily lies in its capability to effectively evaluate gas permeability through unstructured pillar-like nanostructures, thus, providing quantitative values for the appropriate driving pressure and expected gas removal time in practical device operation.

울산만 내측과 외측에서 계절적 환경요인의 변화에 의한 식물플랑크톤 성장 및 분포 (Seasonal Phytoplankton Growth and Distribution Pattern by Environmental Factor Changes in Inner and Outer Bay of Ulsan, Korea)

  • 이민지;김동선;김영옥;손문호;문창호;백승호
    • 한국해양학회지:바다
    • /
    • 제21권1호
    • /
    • pp.24-35
    • /
    • 2016
  • 2014년 울산만 내, 외측 해역에서 해양환경의 계절 변화가 식물플랑크톤 군집의 공간 분포에 미치는 영향을 파악하였다. 울산만을 태화강 하구에 위치한 내측과 외양 영향을 강하게 받는 외측으로 나누어, 내측과 외측의 환경 차이를 t-test로 검증하였다. 수온은 동계(t = -5.833, p < 0.01)와 추계(p > 0.05)에는 외측이 높았고, 춘계(t = 4.247, p < 0.01)와 하계(t = 2.876, p < 0.05)에는 내측이 높았다. 염분은 추계를 제외한 모든 계절에 내측에서 외측보다 유의하게 낮았다(p < 0.01). 동계에는 수층 혼합에 의해 전 수층에서 영양염 농도가 높았고, 하계에는 담수 유입으로 내측 표층에서 현저하게 높았다. 크기 분획된 Chl. a 양은 $20{\mu}m$보다 작은 크기의 nano, pico식물플랑크톤의 양이 많았다. 극미소 식물플랑크톤은 영양염 농도가 낮은 외양 환경에서 적응력이 높은데 이러한 결과는 조사해역이 외양의 영향을 강하게 받고 있음을 시사한다. 춘계와 하계에는 내측 정점을 중심으로 유글레나류 Eutreptiella gymnastica의 밀도가 특이적으로 높았다. 이는 강우 후 많은 담수가 유입되어 저염분 환경이 조성되고 DIN (nitrate+nitrite, ammonium)이 대량 공급되었기 때문이다. 하계에는 태화강으로부터 다량의 담수가 공급되어 담수미세 남조류 Oscillatoria sp., Microcystis sp.가 내측 정점(1-5)을 중심으로 높은 밀도로 출현하였다. 추계와 동계에는 규조류와 은편모류가 우점하였다. 높은 현존량을 보인 중심 규조류Chaetoceros 속은 성층 약화로 저층에서 공급되는 영양염류의 영향을 받아 빠르게 성장하였고, 은편모조류는 다른 식물플랑크톤의 상대적인 성장 둔화로 기회적으로 우점하였다. 결과적으로 울산만은 강우기인 춘계와 하계에 태화강의 영향을 강하게 받아 내측 정점을 중심으로 저염분, 고영양염 환경이 유지되었고, 추계와 동계에는 만 외측 외양수의 영향을 크게 받았으며, 식물플랑크톤 군집은 크게 이 두가지 환경요인에 의해 계절적으로 제어되는 것으로 판단되었다.