• 제목/요약/키워드: nano materials

검색결과 4,501건 처리시간 0.035초

Bending Strength of Textured Alumina Prepared by Slip Casting in a Strong Magnetic Field

  • Suzuki, Tohru S.;Uchikoshi, Tetsuo;Morita, Koji;Hirage, Keijiro;Sakka, Yoshio
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1099-1100
    • /
    • 2006
  • The mechanical properties of ceramics materials can be tailored by designing their microstructures. We have reported that development of texture can be controlled by slip casting in a strong magnetic field followed by heating even for diamagnetic ceramics such as alumina. A strong magnetic field of 12T was applied to the suspension indcuding alumina powder to rotate each particle during slip casting. The sintering was conducted at the desired temperature in air without a magnetic field. C-axis of alumina was parallel to the magnetic field. Bending strength of textured alumina depended on the direction of oriented microstructure.

  • PDF

수열합성법을 이용한 Brookite $TiO2$ 졸의 제조 및 광촉매 효과 (Synthesis and Photocatalytic Effect of Brookite Phase $TiO_2$ Colloidal Sol by Hydrothermal Method)

  • 윤초롱;오효진;;박경순;이내성;김선재
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 영호남 합동 학술대회 및 춘계학술대회 논문집 센서 박막 기술교육
    • /
    • pp.117-120
    • /
    • 2006
  • $TiOCl_2$를 중화시키고 과산화수소와 반응시켜 Ti peroxo 전구체를 수열합성법을 이용하여 autoclave 반응기 내에서 가열하여 $TiO_2$ 졸을 제조하였다. Autoclave 반응기 내에 압력을 가하면 브룩카이트상 $TiO_2$졸이 형성됨을 확인하였고, 중화과정에서 NaCl을 첨가하여 Ti 수산화물 격자 내에 Na 이온을 포획되어 브룩카이트상이 나타남을 알 수 있었다. Na 이온의 첨가량에 따라 브룩카이트 결정상 함량이 달라져 광촉매 활성도 달라짐을 브룩카이트상 $TiO_2$가 코팅된 박막의 기상벤젠 광분해 실험을 통해 확인하였고 미세구조, 결정성, 광흡수도률 측정하여 특성평가를 실시하였다.

  • PDF

다중벽 탄소나노튜브를 함유한 PC/ABS 복합재의 마모 특성 및 다중벽 탄소나노튜브의 유출 평가 (Evaluation of MWCNT Exposure and the Wear Characteristics of MWCNT-containing PC/ABS Composites)

  • 이현우;김경식;이재혁;김효섭;김재호;오동훈;류상효;장영찬;김재현;이학주;김광섭
    • Tribology and Lubricants
    • /
    • 제30권5호
    • /
    • pp.278-283
    • /
    • 2014
  • Carbon nanotubes (CNTs) are used in various composite materials to enhance electrical, thermal and mechanical properties of composite materials. In this study, we investigate the wear characteristics of polycarbonate/acrylonitrile-butadiene-styrene (PC/ABS) blends containing multi-walled carbon nanotubes (MWCNTs). PC/ABS blends are commonly used in many industrial applications such as cellular phones and display cases and MWCNTs have been added to the PC/ABS blends to improve their electromagnetic interference shielding (EMS). We performed wear tests on PC/ABS blends containing MWCNTs under reciprocating linear sliding conditions with chrome steel balls as a counterpart material. The normal loads were 10, 30, 50, 70, 100 N, the sliding speed was 10 mm/s, the stroke length was 15 mm, and the tests lasted 900 s. The MWCNTs included in the PC/ABS blends lower the wear volume and friction coefficient of the composites. We analyzed the wear debris collected from the composites during the tests in terms of the MWCNT concentration using inductively coupled plasma optical emission spectroscopy. The results show that the quantity of MWCNTs in the debris is proportional to the concentration of MWCNTs in the composite, indicating that the exposure of the MWCNTs to environments by wear could be increased with their concentration in the composite.

MoS2/Montmorillonite Nanocomposite: Preparation, Tribological Properties, and Inner Synergistic Lubrication

  • Cheng, Lehua;Hu, Enzhu;Chao, Xianquan;Zhu, Renfa;Hu, Kunhong;Hu, Xianguo
    • Nano
    • /
    • 제13권12호
    • /
    • pp.1850144.1-1850144.13
    • /
    • 2018
  • A nano-$MoS_2$/montmorillonite K-10 (K10) composite was prepared and characterized. The composite contains two types of 2H-$MoS_2$ nanoparticles. One is the hollow spherical $MoS_2$ with a size range of 75 nm, and the other is the spherical nano cluster of $MoS_2$ with a size range of 30 nm. The two kinds of nano-$MoS_2$ were formed via assembly of numerous $MoS_2$ nano-platelets with a size of ~10 nm. A tribological comparison was then made among nano-$MoS_2$/K10, K10, nano-$MoS_2$ and a mechanical mixture of K10 and nano-$MoS_2$. K10 reduced the wear but slightly increased the friction. Nano-$MoS_2$ remarkably reduced both friction and wear. The mechanical mixture demonstrated better wear resistance than nano-$MoS_2$, indicating a synergistic anti-wear effect of nano-$MoS_2$ and K10. The synergistic effect was reinforced using nano-$MoS_2$/K10 instead of the mechanical mixture. A part of the $MoS_2$ in the contact region always lubricated the friction pair, and the rest formed a tribofilm. K10 segregated the friction pair to alleviate the ablation wear but magnified the abrasive wear. S-$MoS_2$ protects K10 and they together function as both a lubricant and an isolating agent to reduce the ablation and abrasive wear.

OTFT materials Containing Fused Aromatics

  • Park, Jong-Won;Zhao, QingHua;Park, Moon-Hak;Kim, Tae-Hoon;Kwon, Soon-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.267-270
    • /
    • 2007
  • Organic thin-film transistors (OTFTs) using organic semiconductors as an active layer are of interest for their use in low-cost, lightweight and flexible electronic products. Although the field-effect mobility of OTFTs is still lower than those of inorganic thin-film transistor, the advantages of easy manufacturing and processing make them suitable for selected applications. In this paper, we report the syntheses and characterization of new p-type OTFT materials.

  • PDF

나노재료를 혼입한 시멘트 페이스트의 역학적 특성 (Mechanical Properties of Cement Paste with Nanomateirals)

  • 최익제;김지현;정철우
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 봄 학술논문 발표대회
    • /
    • pp.193-194
    • /
    • 2020
  • Recently, as the use of high-performance concrete has become common, various problems related to high-performance concrete have become an issue. Among them, self-shrinkage of cement paste due to low water cement ratio is known to cause problems in the volume stability of concrete. To improve this, studies related to the mixing technology of cement-based materials and nano materials have been actively conducted. Looking at the results of prior research related to nano material mixing technology, generally, research results have been reported in which nano materials are incorporated into cement-based materials to improve material properties1). Among them, it was shown that the mechanical performance and various types of functionality of the cement composite are expressed. Among nano materials, carbon nanotubes (hereinafter referred to as CNTs) and graphenes are used in a mixture with cement-based materials. Accordingly, this study intends to compare the mechanical properties by incorporating various CNTs and graphene into cement paste.

  • PDF