• Title/Summary/Keyword: nano beam

Search Result 691, Processing Time 0.032 seconds

On the thermo-mechanical vibration of an embedded short-fiber-reinforced nanobeam

  • Murat Akpinar;Busra Uzun;Mustafa Ozgur Yayli
    • Advances in nano research
    • /
    • v.17 no.3
    • /
    • pp.197-211
    • /
    • 2024
  • This work investigates the thermo-mechanical vibration frequencies of an embedded composite nano-beam restrained with elastic springs at both ends. Composite nanobeam consists of a matrix and short fibers as reinforcement elements placed inside the matrix. An approach based on Fourier sine series and Stokes' transform is adopted to present a general solution that can examine the elastic boundary conditions of the short-fiber-reinforced nanobeam considered with the Halpin-Tsai model. In addition to the elastic medium effect considered by the Winkler model, the size effect is also considered on the basis of nonlocal strain gradient theory. After creating an eigenvalue problem that includes all the mentioned parameters, this problem is solved to examine the effects of fiber and matrix properties, size parameters, Winkler stiffness and temperature change. The numerical results obtained at the end of the study show that increasing the rigidity of the Winkler foundation, the ratio of fiber length to diameter and the ratio of fiber Young's modulus to matrix Young's modulus increase the frequencies. However, thermal loads acting in the positive direction and an increase in the ratio of fiber mass density to matrix mass density lead to a decrease in frequencies. In this study, it is clear from the eigenvalue solution calculating the frequencies of thermally loaded embbeded short-fiber-reinforced nanobeams that changing the stiffness of the deformable springs provides frequency control while keeping the other properties of the nanobeam constant.

Indentation of YSZ/Al2O3 Layered Systems Prepared by Nano-Coating (알루미나에 YSZ가 나노코팅된 층상형 시스템의 인덴테이션 특성평가)

  • Kim, Sang-Kyum;Kim, Tae-Woo;Kim, Chul;Shin, Tae-Ho;Han, In-Sub;Woo, Sang-Kuk;Lee, Kee-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.1
    • /
    • pp.43-49
    • /
    • 2005
  • YSZ layer containing nano-sized particles has been deposited on the commercial A1203 substrate by Electron Beam Physical Vapor Deposition (EB-PVD). The role of coating rnjcrostructures of YSZ to indentation damage is studied. The different coating microsouctures are prepared by varying the substrate temperatures from $600^{circ}C$ to $800^{circ}C$ during the deposition. Microhardness test and Hertzian indentation are conducted on the $YSZ/Al_{2}O_{3}$ layered systems. The damage and flilure behaviors have been investigated according to the effect of microstructures and indentation loads. With increasing the substrate temperature during EB-PVD, the overall grain sizes are coarser and more faceted, which microsoucture ultimately influences on the indentation behavior, thus, YSZ/Al_{2}O_{3}$ layered system prepared at the substrate temperature of $800^{circ}C$ shows relatively higher damage tolerance.

Characteristics of Hardness and Elastic Modulus of PMMA Film using Nano-Tribology (Nanotribology를 이용한 PMMA 박막의 Hardness와 Elastic Modulus 특성 연구)

  • Kim, Soo-In;Kim, Hyun-Woo;Noh, Seong-Cheol;Yoon, Duk-Jin;Chang, Hong-Jun;Lee, Jong-Rim;Lee, Chang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.5
    • /
    • pp.372-376
    • /
    • 2009
  • In the modern semiconductor industry, lithography process is used to construct specific patterns. However, due to the decreasing of line width, these days, more and more researchers are interested in PMMA(Poly Methyl Methacrylate) lithography by using e-beam instead of the prior method, PR(Photoresist) lithography by using UV(Ultra-Violet). Additionally, the patterns constructed by lithography are collapsed during the process of cleansing remnants and the resistance against the breakdown of the patterns is known to be proportional to the elastic modulus of pattern-constructing materials. In this research, we measured the change of hardness and elastic modulus of PMMA film surface according to the change of time spent to soft-bake the PMMA film. During the measurement, we controlled the tip pressure from $25{\mu}N$ to $8,500{\mu}N$ having intervals that are $134.52{\mu}N$. For these measurements, we used the Triboindenter from Hysitron to gauge the hardness and elastic modulus and the tip we used was Berkovich diamond Tip.

Effect of Post-clad Heat Treatment on Microstructures and Mechanical Properties of Cu-NiCrBSi Dissimilar Laser Clads (후열처리에 따른 Cu-NiCrBSi 이종 레이저 클래드부의 미세조직 및 기계적 성질 변화)

  • Kim, Kyeong-Min;Jeong, Ye-Seon;Sim, Ahjin;Park, Wonah;Park, Changkyoo;Chun, Eun-Joon
    • Korean Journal of Materials Research
    • /
    • v.30 no.9
    • /
    • pp.465-473
    • /
    • 2020
  • For surface hardening of a continuous casting mold component, a fundamental metallurgical investigation on dissimilar laser clads (Cu-NiCrBSi) is performed. In particular, variation behavior of microstructures and mechanical properties (hardness and wear resistance) of dissimilar clads during long-term service is clarified by performing high-temperature post-clad heat treatment (temperature range: 500 ~ 1,000 ℃ and isothermal holding time: 20 ~ 500 min). The microstructures of clad metals (as-clads) consist of fine dendrite morphologies and severe microsegregations of the alloying elements (Cr and Si); substrate material (Cu) is clearly confirmed. During the post-clad heat treatment, the microsegregations are totally homogenized, and secondary phases (Cr-based borides and carbides) precipitated during the short-term heat treatment are also almost dissolved, especially at the heat treatment conditions of 950 ℃ for 500 min. Owing to these microstructural homogenization behaviors, an opposite tendency of the surface mechanical properties can be confirmed. In other words, the wear resistance (wear rate) improves from 4.1 × 10-2 ㎣/Nm (as-clad condition) to 1.4 × 10-2 ㎣/Nm (heat-treated at 950 ℃ for 500 min), whereas the hardness decreases from 453 HV (as-clad condition) to 142 HV (heat-treated at 950 ℃ for 500 min).

Fabrication of Photo Sensitive Graphene Transistor Using Quantum Dot Coated Nano-Porous Graphene

  • ;Lee, Jae-Hyeon;Choe, Sun-Hyeong;Im, Se-Yun;Lee, Jong-Un;Bae, Yun-Gyeong;Hwang, Jong-Seung;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.658-658
    • /
    • 2013
  • Graphene is an attractive material for various device applications due to great electrical properties and chemical properties. However, lack of band gap is significant hurdle of graphene for future electrical device applications. In the past few years, several methods have been attempted to open and tune a band gap of graphene. For example, researchers try to fabricate graphene nanoribbon (GNR) using various templates or unzip the carbon nanotubes itself. However, these methods generate small driving currents or transconductances because of the large amount of scattering source at edge of GNRs. At 2009, Bai et al. introduced graphene nanomesh (GNM) structures which can open the band gap of large area graphene at room temperature with high current. However, this method is complex and only small area is possible. For practical applications, it needs more simple and large scale process. Herein, we introduce a photosensitive graphene device fabrication using CdSe QD coated nano-porous graphene (NPG). In our experiment, NPG was fabricated by thin film anodic aluminum oxide (AAO) film as an etching mask. First of all, we transfer the AAO on the graphene. And then, we etch the graphene using O2 reactive ion etching (RIE). Finally, we fabricate graphene device thorough photolithography process. We can control the length of NPG neckwidth from AAO pore widening time and RIE etching time. And we can increase size of NPG as large as 2 $cm^2$. Thin CdSe QD layer was deposited by spin coatingprocess. We carried out NPG structure by using field emission scanning electron microscopy (FE-SEM). And device measurements were done by Keithley 4200 SCS with 532 nm laser beam (5 mW) irradiation.

  • PDF

Fabrication of Nanopatterns for Biochip by Nanoimprint Lithography (나노임프린트를 이용한 바이오칩용 나노 패턴 제작)

  • Choi, Ho-Gil;Kim, Soon-Joong;Oh, Byung-Ken;Choi, Jeong-Woo
    • KSBB Journal
    • /
    • v.22 no.6
    • /
    • pp.433-437
    • /
    • 2007
  • A constant desire has been to fabricate nanopatterns for biochip and the Ultraviolet-nano imprint lithography (UV-NIL) is promising technology especially compared with thermal type in view of cost effectiveness. By using this method, nano-scale to micro-scale structures also called nanopore structures can be fabricated on large scale gold plate at normal conditions such as room temperature or low pressure which is not possible in thermal type lithography. One of the most important methods in fabricating biochips, immobilizing, was processed successfully by using this technology. That means immobilizing proteins only on the nanopore structures based on gold, not on hardened resin by UV is now possible by utilizing this method. So this selective nano-patterning process of protein can be useful method fabricating nanoscale protein chip.

A Study on the Roll Forming Characteristics of an Asymmetric Roller with a 6 mm Steel Plate using the Finite Element Method (유한요소법을 사용한 6 mm 후판의 비대칭 롤포밍 성형변형특성에 관한 연구)

  • Kim, Seongsoo;Lee, Gyeonghwan;Chung, Hanshik;Kim, Dong-Uk;Lee, Je-Hyun;Choi, Heekyu
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.8
    • /
    • pp.494-499
    • /
    • 2009
  • As a novel method to produce a steel beam with 6mm thickness for buildings, a continuous roll forming process is reported. The roll shape is asymmetric and consists of 6 pairs of rollers to bend the steel plate from $0^{\circ}$ to $90^{\circ}$. Results obtained upon application of the roll forming process showed that the angle of the section plate is $90^{\circ}$. However, defects such as bowing and camber as high as 3.2 [$^{\circ}/m$] were observed. A FEM (Finite Element Method) analysis was applied to investigate the causes of the results for the region between rollers no. 5 and no. 6. The results of a FEM simulation of deformation and stress showed that there are some strong peak stresses on the upper surface and bottom surface of the material. The positions of the peak stresses did not show a correspondence between the upper and bottom surfaces. Thus, the defects in the process of roll forming with a 6 mm thick steel plate occur by the unbalanced stresses between the upper surface and bottom surface of the material in this study.

Effects of Ar/N2 Two-step Plasma Treatment on the Quantitative Interfacial Adhesion Energy of Low-Temperature Cu-Cu Bonding Interface (Ar/N2 2단계 플라즈마 처리에 따른 저온 Cu-Cu 직접 접합부의 정량적 계면접착에너지 평가 및 분석)

  • Choi, Seonghun;Kim, Gahui;Seo, Hankyeol;Kim, Sarah Eunkyung;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.29-37
    • /
    • 2021
  • The effect of Ar/N2 two-step plasma treatment on the quantitative interfacial adhesion energy of low temperature Cu-Cu bonding interface were systematically investigated. X-ray photoelectron spectroscopy analysis showed that Ar/N2 2-step plasma treatment has less copper oxide due to the formation of an effective Cu4N passivation layer. Quantitative measurements of interfacial adhesion energy of Cu-Cu bonding interface with Ar/N2 2-step plasma treatment were performed using a double cantilever beam (DCB) and 4-point bending (4-PB) test, where the measured values were 1.63±0.24 J/m2 and 2.33±0.67 J/m2, respectively. This can be explained by the increased interfacial adhesion energy according phase angle due to the effect of the higher interface roughness of 4-PB test than that of DCB test.

The preparation of ultra hard nitrogenated DLC film by $N_2^+$ implantation

  • Olofinjana, A.O.;Chen, Z.;Bell, J.M.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.165-166
    • /
    • 2002
  • Hydrogen free diamond like carbon (DLC) films were prepared on steel substrates by using a single ion beam in a configuration that allowed sputtering of a graphite target and at the same time allowed to impact the substrate at a grazing angle. The DLC films so prepared have improved properties with increased disorder and with modest hardness that is slightly higher than previously reported values. We have studied the effects of $N_2^+$ ions implantation on such films. It is found that the implantations of nitrogen ions into DLC films lead to chemical modifications that allowed N atoms to be incorporated into the carbon network to produce a nitrogenated DLC. Nano-indentation experiments indicated that the nitrogenated films have consistently higher hardnesses ranging from 30 to 45GPa, which represents a considerable increase in surface hardness, compared with non-nitrogenated precursor films. The investigations by XPS and Raman spectroscopy suggests that the $N_2^+$ implanted DLCs had undergone both chemical and structural modifications through the incorporation of N atoms and the increased ratio of $sp^3/sp^2$ type bonding. The observed high hardness was therefore attributable to these structural and chemical modifications. This result has implication for the preparation of super hard wear resistant films required for tribological functions in devices.

  • PDF

Evaluation of Young's Modulus of a Cantilever Beam by TA-ESPI (TA-ESPI에 의한 외팔보의 탄성계수 측정)

  • Lee H.S.;Kim K.S.;Kang K.S.;Jung H.C.;Yang S.P.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1115-1119
    • /
    • 2005
  • The paper proposes the elastic modulus evaluation technique of a cantilever beam by vibration analysis based on time-average electronic speckle pattern interferometry (TA-ESPI) with non-contact and nondestructive and Euler-Bernoulli equation. General approaches for the measurement of elastic modulus of thin film are Nano indentation test, Bulge test and Micro-tensile test and so on. They each have strength and weakness in the preparation of test specimen and the analysis of experimental result. ESPI has been developed as a common measurement method for vibration mode visualization and surface displacement. Whole-field vibration mode shape (surface displacement distribution) at a resonance frequency can be visualized by ESPI. And the maximum surface displacement distribution from ESPI is a clue to find the resonance frequency at each vibration mode shape. And the elastic modules of test material can be easily estimated from the measured resonance frequency and Euler-Bernoulli equation. The TA-ESPI vibration analysis technique is able to give the elastic modulus of materials through the simple processing of preparation and analysis.

  • PDF