• Title/Summary/Keyword: nano beam

Search Result 691, Processing Time 0.028 seconds

A New Approach to Surface Imaging by Nano Secondary Ion Mass Spectrometry

  • Hong, Tae-Eun;Byeon, Mi-Rang;Jang, Yu-Jin;Kim, Jong-Pil;Jeong, Ui-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.105.1-105.1
    • /
    • 2016
  • Many of the complex materials developed today derive their unique properties from the presence of multiple phases or from local variations in elemental concentration. Simply performing analysis of the bulk materials is not sufficient to achieve a true understanding of their physical and chemical natures. Secondary ion mass spectrometer (SIMS) has met with a great deal of success in material characterization. The basis of SIMS is the use of a focused ion beam to erode sample atoms from the selected region. The atoms undergo a charge exchange with their local environment, resulting in their conversion to positive and negative secondary ions. The mass spectrometric analysis of these secondary ions is a robust method capable of identifying elemental distribution from hydrogen to uranium with detectability of the parts per million (ppm) or parts per billion (ppb) in atomic range. Nano secondary ion mass spectrometer (Nano SIMS, Cameca Nano-SIMS 50) equipped with the reactive ion such as a cesium gun and duoplasmatron gun has a spatial resolution of 50 nm which is much smaller than other SIMS. Therefore, Nano SIMS is a very valuable tool to map the spatial distribution of elements on the surface of various materials In this talk, the surface imaging applications of Nano SIMS in KBSI will be presented.

  • PDF

The Effects of Codoping of Be and Mg on Incorporation of Mn in GaAs

  • Yu, Fucheng;Gao, Cunxu;Parchinskiy, P.B.;Chandra, Sekar.P.V.;Kim, Do-Jin;Kim, Chang-Soo;Kim, Hyo-Jin;Ihm, Young-Eon
    • Korean Journal of Materials Research
    • /
    • v.18 no.8
    • /
    • pp.444-449
    • /
    • 2008
  • Samples of GaMnAs, GaMnAs codoped with Be, and GaMnAs simultaneously codoped with Be and Mg were grown via low-temperature molecular beam epitaxy (LT-MBE). Be codoping is shown to take the Ga sites into the lattice efficiently and to increase the conductivity of GaMnAs. Additionally, it shifts the semiconducting behavior of GaMnAs to metallic while the Mn concentration in the GaMnAs solid solution is reduced. However, with simultaneous codoping of GaMnAs with Be and Mg, the Mn concentration increases dramatically several times over that in a GaMnAs sample alone. Mg and Be are shown to eject Mn from the Ga sites to form MnAs and MnGa precipitates.

Development of Surface Treatment for Hydrophobic Property on Aluminum Surface (알루미늄의 발수 표면처리 기술 개발)

  • Byun, Eun-Yeon;Lee, Seung-Hun;Kim, Jong-Kuk;Kim, Yang-Do;Kim, Do-Geun
    • Journal of Surface Science and Engineering
    • /
    • v.45 no.4
    • /
    • pp.151-154
    • /
    • 2012
  • A hydrophobic surface has been fabricated on aluminum by two-step surface treatment processes consisting of structure modification and surface coating. Nature inspired micro nano scale structures were artificially created on the aluminum surface by a blasting and Ar ion beam etching. And a hydrophobic thin film was coated by a trimethylsilane ($(CH_3)_3SiH$) plasma deposition to minimize the surface energy of the micro nano structure surface. The contact angle of micro nano structured aluminum surface with the trimethylsilane coating was $123^{\circ}$ (surface energy: 9.05 $mJ/m^2$), but the contact angle of only trimethylsilane coated sample without the micro nano surface structure was $92^{\circ}$ (surface energy: 99.15 $mJ/m^2$). In the hydrophobic treatment of aluminum surface, a trimethylsilane coated sample having the micro nano structure was more effective than only trimethylsilane coated sample without the micro nano structure.

Fabrication of Nanoscale Reusable Quartz Master for Nano Injection Molding Process (재사용 가능한 100nm급 패턴의 퀄츠 마스터 제작 및 퀄츠 마스터를 사용한 사출성형실험)

  • Choi Doo-Sun;Lee Joon-Hyoung;Yoo Yeong-Eun;Je Tae-Jin;Whang Kyung-Hyun;Seo Young Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.228-231
    • /
    • 2005
  • In this paper, we present reusable quartz master fabricated by electron-beam lithography and dry etching process of quartz, and results of injection molding based on the reusable quartz master for the manufacturing of nano-scale information media. Since patterned structures of photoresist can be easily damaged by separation (demolding) process of nickel stamper and master, a master with photoresist cannot be reused in stamper fabrication process. In this work, we have made it possible of the repeated use of master by directly patterning on quart in nickel stamper fabrication process. We have designed and fabricated four different specimens including 100nm, 140nm 200nm and 400nm pit patterns. In addition, both intaglio and embossed carving patterns are fabricated for each specimen. In the preliminary test of injection molding, we have fabricated polycarbonate patterns with varying mold temperature. We have experimentally verified the fabrication process of the reusable quart master and possibility of quartz master as direct stamper.

Dynamic Mechanical Properties of Natural Fiber/Polymer Biocomposites: The Effect of Fiber Treatment with Electron Beam

  • Han, Young-Hee;Han, Seong-Ok;Cho, Dong-Hwan;Kim, Hyung-Il
    • Macromolecular Research
    • /
    • v.16 no.3
    • /
    • pp.253-260
    • /
    • 2008
  • Environmentally friendly biocomposites were made using plant-based natural fibers, such as henequen and kenaf. The natural fiber reinforced polypropylene (PP) and unsaturated polyester (UP) biocomposites were examined in terms of the reinforcing effect of natural fibers on thermoplastic and thermosetting polymers. Kenaf (KE) and henequen (HQ) fibers were treated with an electron beam (EB) of 10 and 200 kGy doses, respectively, or with a 5 wt% NaOH solution. Four types of biocomposites (KE/PP, HQ/PP, KE/UP and HQ/UP) were fabricated by compression molding and each biocomposite was characterized by dynamic mechanical analysis and thermogravimetric analysis. The kenaf fiber had the larger reinforcing effect on the dynamic mechanical properties of both PP and UP biocomposites than the henequen fiber. The highest storage modulus was obtained from the biocomposite with the combination of UP matrix and 200 kGy EB treated kenaf fibers.

Improvement of Out-coupling Efficiency of Organic Light Emitting Device by Ion-beam Plasma-treated Plastic Substrate (이온빔 플라즈마 처리된 플라스틱 기판에 의한 OLED의 광추출 효율 향상)

  • Kim, Hyeun Woo;Song, Tae Min;Lee, Hyeong Jun;Jeon, Yongmin;Kwon, Jeong Hyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.7-10
    • /
    • 2022
  • A functional polyethylene terephthalate substrate to increase light extraction efficiency of organic light-emitting diodes is studied. We formed nano-structured PET surfaces by controlling the power, gas, and exposure time of the linear ion-beam. The haze of the polyethylene terephthalate can be controlled from 0.2% to 76.0% by changing the peak-to-valley roughness of nano structure by adjusting the exposure cycle. The treated polyethylene terephthalate shows average haze of 76.0%, average total transmittance of 86.6%. The functional PET increases the current efficiency of organic light-emitting diodes by 47% compared to that of organic light-emitting diode on bare polyethylene terephthalate. In addition to polyethylene terephthalate with light extraction performance, by conducting additional research on the development of functional PET with anti-reflection and barrier performance, it will be possible to develop flexible substrates suitable for organic light-emitting diodes lighting and transparent flexible displays.

Vibration analysis of double-walled carbon nanotubes based on Timoshenko beam theory and wave propagation approach

  • Emad Ghandourah;Muzamal Hussain;Amien Khadimallah;Abdulsalam Alhawsawi;Essam Mohammed Banoqitah;Mohamed R. Ali
    • Advances in nano research
    • /
    • v.14 no.6
    • /
    • pp.521-525
    • /
    • 2023
  • This paper concerned with the vibration of double walled carbon nanotubes (CNTs) as continuum model based on Timoshenko-beam theory. The vibration solution obtained from Timoshenko-beam theory provides a better presentation of vibration structure of carbon nanotubes. The natural frequencies of double-walled CNTs against half axial wave mode are investigated. The frequency decreases on decreasing the half axial wave mode. The shape of frequency arcs is different for various lengths. It is observed that model has produced lowest results for C-F and highest for C-C. A large parametric study is performed to see the effect of half axial wave mode on frequencies of CNTs. This numerically vibration solution delivers a benchmark results for other techniques. The comparison of present model is exhibited with previous studies and good agreement is found.

Deflection of a Thin Solid Structure by a Thermal Bubble (열 기포에 의한 고체 박막의 변형 해석)

  • Kim, Ho-Young;Lee, Yoon-Pyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.2
    • /
    • pp.236-242
    • /
    • 2003
  • Thermal bubbles find their diverse application areas in the MEMS (MicroElectroMechanial Systems) technology, including bubble jet printers, microactuators, micropumps, etc.. Especially, microactuators and micropumps, which use a microbubble growing by a controlled heat input, frequently involve mechanical and thermal interaction of the bubble with a solid structure, such as a cantilever beam and a membrane. Although the concept is experimentally verified that an internal pressure of the bubble can build up high enough to deflect a thin solid plate or a beam, the physics of the entire process have not yet been thoroughly explored. This work reports the experimental study of the growth of a thermal bubble while deflecting a thin cantilever beam. A physical model is presented to predict the elastic response of the cantilever beam based on the experimental measurements. The scaling law constructed through this work can provide a design guide for micro- and nano-systems that employ a thermal bubble for their actuation/pumping mechanism.