• Title/Summary/Keyword: nano beam

Search Result 691, Processing Time 0.03 seconds

Lifetime Performance of EB-PVD Thermal Barrier Coatings with Coating Thickness in Cyclic Thermal Exposure

  • Lu, Zhe;Lee, Seoung Soo;Lee, Je-Hyun;Jung, Yeon-Gil
    • Korean Journal of Materials Research
    • /
    • v.25 no.10
    • /
    • pp.571-576
    • /
    • 2015
  • The effects of coating thickness on the delamination and fracture behavior of thermal barrier coating (TBC) systems were investigated with cyclic flame thermal fatigue (FTF) and thermal shock (TS) tests. The top and bond coats of the TBCs were prepared by electron beam-physical vapor deposition and low pressure plasma spray methods, respectively, with a thickness ratio of 2:1 in the top and bond coats. The thicknesses of the top coat were 200 and $500{\mu}m$, and those of the bond coat were 100 and $250{\mu}m$. FTF tests were performed until 1140 cycles at a surface temperature of $1100^{\circ}C$ for a dwell time of 5 min. TS tests were also done until more than 50 % delamination or 1140 cycles with a dwell time of 60 min. After the FTF for 1140 cycles, the interface microstructures of each TBC exhibited a sound condition without cracking or delamination. In the TS, the TBCs of 200 and $500{\mu}m$ were fully delaminated (> 50 %) within 171 and 440 cycles, respectively. These results enabled us to control the thickness of TBC systems and to propose an efficient coating in protecting the substrate in cyclic thermal exposure environments.

Surface Discharge Characteristics of New Flat Fluorescent Lamp Enhanced by MgO Nano-Crystals

  • Lee, Yang-Kyu;Heo, Seung-Taek;Lee, You-Kook;Lee, Dong-Gu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.687-690
    • /
    • 2009
  • It has been recently reported that nano-sized MgO single crystal powders emit ultraviolet by stimulation of electrons under vacuum condition. Therefore, in this study, nano-crystalline MgO powders were applied to a xenon plasma flat fluorescent lamp for LCD backlight to improve emission efficiency of the lamp by help of extra ultraviolet from nano-MgO. For comparison with nano-crystalline MgO powders, MgO nano-thin film was applied directly on phosphors inside a lamp panel through e-beam evaporation The luminance and efficiency of FFL with an addition of MgO nano-crystal powders on phosphors were improved by around 20%. Application of MgO thin film to phosphors worsened the emission characteristics of FFLs, even rather than FFL without MgO. The reason came from insufficient stimulation of phosphors by UV, crystallinity of MgO, and low secondary electron coefficient.

  • PDF

Assessment of nonlinear stability of geometrically imperfect nanoparticle-reinforced beam based on numerical method

  • Zheng, Yuxin;Jin, Hongwei;Jiang, Congying
    • Advances in nano research
    • /
    • v.13 no.2
    • /
    • pp.113-120
    • /
    • 2022
  • In this paper, a finite element (FE) simulation has been developed in order to examine the nonlinear stability of reinforced sandwich beams with graphene oxide powders (GOPs). In this regard, the nonlinear stability curves have been obtained asuming that the beam is under compressive loads leading to its buckling. The beam is considered to be a three-layered sandwich beam with metal core and GOP reinforced face sheets and it is rested on elastic substrate. Moreover, a higher-order refined beam theory has been considered to formulate the sandwich beam by employing the geometrically perfect and imperfect beam configurations. In the solving procedure, the utalized finite element simulation contains a novel beam element in which shear deformation has been included. The calculated stability curves of GOP-reinforced sandwich beams are shown to be dependent on different parameters such as GOP amount, face sheet thickness, geometrical imperfection and also center deflection.

Fabrication of nano-structured PMMA substrates for the improvement of the optical transmittance (반구형 나노 패턴의 크기에 따른 PMMA기판의 광특성 평가)

  • Park, Y.M.;Shin, H.G.;Kim, B.H.;Seo, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.217-220
    • /
    • 2009
  • This paper presents fabrication method of nano-structured PMMA substrates as well as evaluations of their optical transmittance. For anti-reflective surface, surface coating method had been conventionally used. However, it requires high cost, complicated process and post-processing times. In this study, we suggested the fabrication method of anti-reflective surface by the hot embossing process. Using the nano patterned master fabricated by anodic aluminum oxidation process. Anodic aluminum oxide(AAO) is widely used as templates or a molds for various applications such as carbon nano tube (CNT), nano rod and nano dots. Anodic aluminum oxidation process provides highly ordered regular nano-structures on the large area, while conventional pattering methods such as E-beam and FIB can fabricate arbitrary nano-structures on small area. We fabricated a porous alumina hole array with various inter-pore distance and pore diameter. In order to replicate nano-structures using alumina nano hole array patterns, we have carried out hot-embossing process with PMMA substrates. Finally the nano-structured PMMA substrates were fabricated and their optical transmittances were measured in order to evaluate the charateristivs of anti-reflection. Anti-reflective structure can be applied to various displays and automobile components.

  • PDF

A New Xenon Plasma Flat Fluorescent Lamp Enhanced with MgO Nano-Crystals for Liquid Crystal Display Applications

  • Lee, Yang-Kyu;Heo, Seung-Taek;Lee, You-Kook;Lee, Dong-Gu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.4
    • /
    • pp.186-189
    • /
    • 2010
  • Nano-sized MgO single crystal powders have recently been reported to emit ultraviolet by stimulation of electrons in a vacuum. In this study, nanocrystalline MgO powders were applied to a xenon plasma flat fluorescent lamp (FFL) for a liquid crystal display backlight to improve its emission efficiency through the extra ultraviolet from the nano-MgO crystals. For comparison, a MgO nano-thin film was applied directly on the phosphors inside a lamp panel through e-beam evaporation. Adding MgO nano-crystal powders to the phosphors improved the luminance and efficiency of FFLs by around 20% and MgO nano-crystal coverage of 40% of the phosphor provided the best FFL emission characteristics; however, application of MgO thin film to the phosphors degraded the emission characteristics, even compared to FFLs without MgO. This was due to insufficient ultraviolet stimulation of the phosphors and the crystallinity and low secondary electron coefficient of the MgO.