• Title/Summary/Keyword: nano beam

Search Result 691, Processing Time 0.028 seconds

Multiple Electron Beam Lithography for High Throughput (생산성 향상을 위한 멀티빔 리소그라피)

  • Choi, Sang-Kook;Yi, Cheon-Hee
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.235-238
    • /
    • 2005
  • A Multiple electron beam lithography system with arrayed microcolumns has been developed for high throughput applications. The small size of the microcolumn opens the possibility for arrayed operation on a scale commensurate. The arrayed microcolumns based on of Single Column Module (SCM) concept has been fabricated and successfully demonstrated. Low energy microcolumn lithography has been operated in the energy range from 250 eV to 300 eV for the generation of nano patterns. Probe beam current at the sample was measured about >1 nA at a total beam current of $0.5\;{\mu}A$ and a working distance of $\~1\;mm$. The magnitude of probe beam current is strong enough for the low energy lithography. The thin layers of PMMA resist have been employed. The results of nano-patterning by low energy microcolumn lithography will be discussed.

Influence of Growth Temperature for Active Layer and Buffer Layer Thickness on ZnO Nanocrystalline Thin Films Synthesized Via PA-MBE

  • Park, Hyunggil;Kim, Younggyu;Ji, Iksoo;Kim, Soaram;Lee, Sang-Heon;Kim, Jong Su;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.203.1-203.1
    • /
    • 2013
  • Zinc oxide (ZnO) nanocrystalline thin films on various growth temperatures for active layer and different buffer layer thickness were grown by plasma-assisted molecular beam epitaxy (PA-MBE) on Si substrates. The ZnO active layer were grown with various growth temperature from 500 to $800^{\circ}C$ and the ZnO buffer layer were grown for different time from 5 to 40 minutes. To investigate the structural and optical properties of the ZnO thin films, scanning electron microscope (SEM), X-ray diffractometer (XRD), and photoluminescence (PL) spectroscopy were used, respectively. In the SEM images, the ZnO thin films have high densification of grains and good roughness and uniformity at $800^{\circ}C$ for active layer growth temperature and 20 minutes for buffer layer growth time, respectively. The PL spectra of ZnO buffer layers and active layers display sharp near band edge (NBE) emissions in UV range and broad deep level emissions (DLE) in visible range. The intensity of NBE peaks for the ZnO thin films significantly increase with increase in the active layer growth temperature. In addition, the NBE peak at 20 minutes for buffer layer growth time has the largest emission intensity and the intensity of DLE peaks decrease with increase in the growth time.

  • PDF

A Study of the Optical System of a Time-of-flight Laser Distance Sensor for a Long Distance with Minimized Divergence Beam Angle (빔 확산각 최소화를 통한 장거리 측정용 ToF 레이저 거리센서 광학계 설계 연구)

  • Lee, Hyun-Hwa;Seo, Jae-Yeong;Jung, Mee-Suk
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.2
    • /
    • pp.79-85
    • /
    • 2021
  • In this paper, a study is conducted on the design of an optical system of a time-of-flight (TOF) laser distance sensor that can measure long distances by minimizing beam divergence. When measuring a long distance, the amount of light on the object's surface decreases as the distance increases, due to the diffusion angle of the laser beam, and thus the beam at the sensor also decreases, causing measurement errors. In general, a cylindrical lens is used to reduce the divergence beam angle. However, an optical system using a cylindrical lens has the problem of degraded performance due to the difficulty with assembly tolerance, as well as the problem of the increased size of the optical system, and thus the use of aspherical lenses has been increasing recently. Therefore, in this study, the optical efficiencies and assembly tolerances of optical systems using respectively a cylindrical lens and an aspherical lens are compared and analyzed.

Frequency, bending and buckling loads of nanobeams with different cross sections

  • Civalek, Omer;Uzun, Busra;Yayli, M. Ozgur
    • Advances in nano research
    • /
    • v.9 no.2
    • /
    • pp.91-104
    • /
    • 2020
  • The bending, stability (buckling) and vibration response of nano sized beams is presented in this study based on the Eringen's nonlocal elasticity theory in conjunction with the Euler-Bernoulli beam theory. For this purpose, the bending, buckling and vibration problem of Euler-Bernoulli nanobeams are developed and solved on the basis of nonlocal elasticity theory. The effects of various parameters such as nonlocal parameter e0a, length of beam L, mode number n, distributed load q and cross-section on the bending, buckling and vibration behaviors of carbon nanotubes idealized as Euler-Bernoulli nanobeam is investigated. The transverse deflections, maximum transverse deflections, vibrational frequency and buckling load values of carbon nanotubes are given in tables and graphs.

Scale-dependent thermal vibration analysis of FG beams having porosities based on DQM

  • Fenjan, Raad M.;Moustafa, Nader M.;Faleh, Nadhim M.
    • Advances in nano research
    • /
    • v.8 no.4
    • /
    • pp.283-292
    • /
    • 2020
  • In the present research, differential quadrature (DQ) method has been utilized for investigating free vibrations of porous functionally graded (FG) micro/nano beams in thermal environments. The exact location of neutral axis in FG material has been assumed where the material properties are described via porosity-dependent power-law functions. A scale factor related to couple stresses has been employed for describing size effect. The formulation of scale-dependent beam has been presented based upon a refined beam theory needless of shear correction factors. The governing equations and the associated boundary conditions have been established via Hamilton's rule and then they are solved implementing DQ method. Several graphs are provided which emphasis on the role of porosity dispersion type, porosity volume, temperature variation, scale factor and FG material index on free vibrational behavior of small scale beams.

A unified formulation for static behavior of nonlocal curved beams

  • Tufekci, Ekrem;Aya, Serhan A.;Oldac, Olcay
    • Structural Engineering and Mechanics
    • /
    • v.59 no.3
    • /
    • pp.475-502
    • /
    • 2016
  • Nanobeams are widely used as a structural element for nanodevices and nanomachines. The development of nano-sized machines depends on proper understanding of mechanical behavior of these nano-sized beam elements. Small length scales such as lattice spacing between atoms, surface properties, grain size etc. are need to be considered when applying any classical continuum model. In this study, Eringen's nonlocal elasticity theory is incorporated into classical beam model considering the effects of axial extension and the shear deformation to capture unique static behavior of the nanobeams under continuum mechanics theory. The governing differential equations are obtained for curved beams and solved exactly by using the initial value method. Circular uniform beam with concentrated loads are considered. The displacements, slopes and the stress resultants are obtained analytically. A detailed parametric study is conducted to examine the effect of the nonlocal parameter, mechanical loadings, opening angle, boundary conditions, and slenderness ratio on the static behavior of the nanobeam.

Ion Transmittance of Anodic Alumina for Ion Beam Nano-patterning (이온빔 나노 패터닝을 위한 양극산화 알루미나의 이온빔 투과)

  • Shin S. W.;Lee J-H;Lee S. G.;Lee J.;Whang C. N.;Choi I-H;Lee K. H.;Jeung W. Y.;Moon H.-C.;Kim T. G.;Song J. H.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.1
    • /
    • pp.97-102
    • /
    • 2006
  • Anodic alumina with self-organized and ordered nano hole arrays can be a good candidate of an irradiation mask to modify the properties of nano-scale region. In order to try using porous anodic alumina as a mask for ion-beam patterning, ion beam transmittance of anodic alumina was tested. 4 Um thick self-standing AAO templates anodized from Al bulk foil with two different aspect ratio, 200:1 and 100:1, were aligned about incident ion beam with finely controllable goniometer. At the best alignment, the transmittance of the AAO with aspect ratio of 200:1 and 100:1 were $10^{-8}\;and\;10^{-4}$, respectively. However transmittance of the thin film AAO with low aspect ratio, 5:1, were remarkably improved to 0.67. The ion beam transmittance of self-standing porous alumina with a thickness larger than $4{\mu}m$ is extremely low owing to high aspect ratio of nano hole and charging effect, even at a precise beam alignment to the direction of nano hole. $SiO_2$ nano dot array was formed by ion irradiation into thin film AAO on $SiO_2$ film. This was confirmed by scanning electron microscopy that the $SiO_2$ nano dot array is similar to AAO hole array.

Biological applications of the NanoSuit for electron imaging and X-microanalysis of insulating specimens

  • Ki Woo Kim
    • Applied Microscopy
    • /
    • v.52
    • /
    • pp.4.1-4.11
    • /
    • 2022
  • Field emission scanning electron microscopy (FESEM) is an essential tool for observing surface details of specimens in a high vacuum. A series of specimen procedures precludes the observations of living organisms, resulting in artifacts. To overcome these problems, Takahiko Hariyama and his colleagues proposed the concept of the "nanosuit" later referred to as "NanoSuit", describing a thin polymer layer placed on organisms to protect them in a high vacuum in 2013. The NanoSuit is formed rapidly by (i) electron beam irradiation, (ii) plasma irradiation, (iii) Tween 20 solution immersion, and (iv) surface shield enhancer (SSE) solution immersion. Without chemical fixation and metal coating, the NanoSuit-formed specimens allowed structural preservation and accurate element detection of insulating, wet specimens at high spatial resolution. NanoSuit-formed larvae were able to resume normal growth following FESEM observation. The method has been employed to observe unfixed and uncoated bacteria, multicellular organisms, and paraffin sections. These results suggest that the NanoSuit can be applied to prolong life in vacuo and overcome the limit of dead imaging of electron microscopy.

Photoluminescence Characteristics of Si-O Superlattice Structure (Si-O 초격자 구조의 포토루미네슨스 특성)

  • Jeong, So-Young;Seo, Yong-Jin;Park, Sung-Woo;Lee, Kyoung-Jin;Kim, Chul-Bok;Kim, Sang-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.202-205
    • /
    • 2002
  • The photoluminescence (PL) characteristics of the silicon-oxygen(Si-O) superlattice formed by molecular beam epitaxy (MBE) were studied. To confirm the presence of the nanocrystalline Si structure, Raman scattering measurement was performed. The blue shift was observed in the PL peak of the oxygen-annealed sample, compared to the hydrogen-annealed sample, which is due to a contribution of smaller crystallites. Our results determine the right direction for the fabrication of silicon-based optoelectronic and quantum devices as well as for the replacement of silicon-on-insulator (SOI) in high-speed and low-power silicon MOSFET devices in the future.

  • PDF