• Title/Summary/Keyword: nano alumino silicate

Search Result 3, Processing Time 0.018 seconds

A Study on the Properties of Traditional Korean Roof Tile by Using Nano Alumino Silicate (전통한식기와의 나노알루미노실리케이트 첨가에 따른 성능연구)

  • Kim, Soon-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.5
    • /
    • pp.425-432
    • /
    • 2020
  • The appearance of Korean traditional roof tiles is beautiful and excellent in water resistance, fire resistance and durability, but a high sintering temperature of 1,200℃ or higher is required. Therefore, due to the economical and heavy weight problem, the current trend is to use different roof finishing materials than Korean traditional roof tiles. By adding nanoaluminosilicate to clay and kaolin, which are the materials of the clay roof tiles, the sintering temperature is sintered at a low temperature of 1,000℃ or less, and the optimal mixing and material process is designed to satisfy the characteristics required as a Korean traditional roof tile. The results of this study again demonstrate the superiority of Korean traditional tiles with roof finishing materials using nanoaluminate. The properties of Korean traditional roof tiles that satisfy the criteria of KS F 3510 by applying fire resistance of natural minerals and nanoparticle technology to flexural strength of 2800N, Bulk specific gravity of 2.0g/㎤ and absorption rate of less than 10.0%, through which and researched materials development.

Nano-Silica effect on the physicomechanical properties of geopolymer composites

  • Khater, H.M.
    • Advances in nano research
    • /
    • v.4 no.3
    • /
    • pp.181-195
    • /
    • 2016
  • Addition of nano-$SiO_2$ (NS) to geopolymer composites has been studied through measurement of compressive strengths, FTIR and XRD analysis. Alumino-silicate materials are coarse aggregate included waste concrete and demolished walls with its cementing binder, cement kiln dust (CKD) used and can possess a pronouncing activation for the geopolymer reaction resulting from the high alkali contents within. Materials prepared at water/binder ratios in a range of 0.30: 0.40 under curing of $40^{\circ}C$ and 100% Relative Humidity (R.H.), while the used activator is sodium hydroxide in the ratio of 2 wt. %. First, CKD is added in the ratio from 10 up to 50 wt., %, and the demolished walls was varied depending on the used CKD content, while using constant ratio of waste concrete (40 wt., %). Second step, depending on the optimum CKD ratio resulted from the first one (40 wt. %), so the control geopolymer mix composed of cement kiln dust, demolished walls and waste concrete in the ratio (40:20:40, wt %). Nano-silica partially replaced waste concrete by 1 up to 8%. Results indicated that, compressive strengths of geopolymer mixes incorporating nano-silica were obviously higher than those control one, especially at early ages and specially with 3%NS.

Nano inclusions in sapphire samples from Sri Lanka

  • Jaijong, K.;Wathanakul, P.;Kim, Y.C.;Choi, H.M.;Bang, S.Y.;Choi, B.G.;Shim, K.B.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.2
    • /
    • pp.84-89
    • /
    • 2009
  • The turbid/translucent, near colorless(milky) metamorphic sapphire samples from Sri Lanka have been characterized after the heat treatment in $N_2$ at $1650^{\circ}C$. As-received sapphire specimens became bluish-colored and exhibited more clarity after the heat treatment. It was found that the color change at inclusions zoning region is attributed by the dissolution. As received samples contain the micro/nano inclusions such as rutile($TiO_2$), ilmenite($FeTiO_3$), spinel($MgAl_{2}O_{4}$)/ulvospinel($Fe_{2}TiO_{4}$) and apatite($Ca_5(PO_4)_3$), which were dissolved by the heat treatment and form the blue color through $Fe^{2+}/Ti^{4+}$ charge transferring. The microstructures become different because as the dissolution of apatite($Ca_5(PO_4)_3(OH,F,Cl)$) in alumino silicates($Al_{2}SiO_{5}$) occurred, resulting in morphological change with the appearance of(Ca, Mg, Al) silicate on the surface. Both as-received and heat treated samples showed the rhombohedral crystal structure of $Al_{2}O_{3}$.