• Title/Summary/Keyword: nano $SiO_2$

Search Result 568, Processing Time 0.037 seconds

Toxicity evaluation based on particle size, contact angle and zeta potential of SiO2 and Al2O3 on the growth of green algae

  • Karunakaran, Gopalu;Suriyaprabha, Rangaraj;Rajendran, Venkatachalam;Kannan, Narayanasamy
    • Advances in nano research
    • /
    • v.3 no.4
    • /
    • pp.243-255
    • /
    • 2015
  • In this investigation, ecotoxicity of nano and micro metal oxides, namely silica ($SiO_2$) and alumina ($Al_2O_3$), on the growth of green algae (Porphyridium aerugineum Geitler) is discussed. Effects of nano and micro particles on the growth, chlorophyll content and protein content of algae are analysed using standard protocols. Results indicate that $SiO_2$ nano and micro $SiO_2$ particles are non-toxic to P. aerugineum Geitler up to a concentration of 1000 mg/L. In addition, $Al_2O_3$ microparticles are less toxic to P. aerugineum Geitler, whereas $Al_2O_3$ nanoparticles are found to be highly toxic at 1000 mg/L. Moreover, $Al_2O_3$ nanoparticles decrease the growth, chlorophyll content, and protein content of tested algae. In addition, zeta potential and contact angle are also important in enhancing the toxicity of metal oxide nanoparticles in aquatic environment. This study highlights a new insight into toxicity evaluation of nanoparticles on beneficial aquatic organisms such as algae.

NANO-SIZED COMPOSITE MATERIALS WITH HIGH PERFORMANCE

  • Niihara, N.;Choa, H.Y.;Sekino, T.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1996.11a
    • /
    • pp.6-6
    • /
    • 1996
  • Ceramic based nanocomposite, in which nano-sized ceramics and metals were dispersed within matrix grains and/or at grain boundaries, were successfully fabricated in the ceramic/cerarnic and ceramic/metal composite systems such as $Al_2O_3$/SiC, $Al_2O_3$/$Si_3N_4$, MgO/SiC, mullite/SiC, $Si_3N_4/SiC, $Si_3N_4$/B, $Al_2O_3$/W, $Al_2O_3$/Mo, $Al_2O_3$/Ni and $ZrO_2$/Mo systems. In these systems, the ceramiclceramic composites were fabricated from homogeneously mixed powders, powders with thin coatings of the second phases and amorphous precursor composite powders by usual powder metallurgical methods. The ceramiclmetal nanocomposites were prepared by combination of H2 reduction of metal oxides in the early stage of sinterings and usual powder metallurgical processes. The transmission electron microscopic observation for the $Al_2O_3$/SiC nanocomposite indicated that the second phases less than 70nm were mainly located within matrix grains and the larger particles were dispersed at the grain boundaries. The similar observation was also identified for other cerarnic/ceramic and ceramiclmetal nanocornposites. The striking findings in these nanocomposites were that mechanical properties were significantly improved by the nano-sized dispersion from 5 to 10 vol% even at high temperatures. For example, the improvement in hcture strength by 2 to 5 times and in creep resistance by 2 to 4 orders was observed not only for the ceramidceramic nanocomposites but also for the ceramiclmetal nanocomposites with only 5~01%se cond phase. The newly developed silicon nitride/boron nitride nanocomposites, in which nano-sized hexagonal BN particulates with low Young's modulus and fracture strength were dispersed mainly within matrix grains, gave also the strong improvement in fracture strength and thermal shock fracture resistance. In presentation, the process-rnicro/nanostructure-properties relationship will be presented in detail. The special emphasis will be placed on the understanding of the roles of nano-sized dispersions on mechanical properties.

  • PDF

Development of the SiO2/Nano Ionomer Composite Membrane for the Application of High Temperature PEMFC (전기방사를 이용한 SiO2/nano ionomer 복합 막의 제조 및 고온 PEMFC에의 응용)

  • Na, Hee-Soo;Hwang, Hyung-Kwon;Lee, Chan-Min;Shul, Yong-Gun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.5
    • /
    • pp.569-578
    • /
    • 2011
  • The $SiO_2$ membranes for polymer electrolyte membrane fuel cell (PEMFC) are preapared by electrospinning method. It leads to high porosity and surface area of membrane to accommodate the proton conducting materials. The composite membrane was prepared by impregnating of Nafion ionomer into the pores of electrospun $SiO_2$ membranes. The $SiO_2$:heteropolyacid (HPA) nano-particles as a inorganic proton conductor were prepared by microemulsion process and the particles are added to the Nafion ionomer. The characterization of the membranes was confirmed by field emission scanning electron microscope (FE-SEM), thermogravimetry analysis (TGA), and single cell performance test for PEMFC. The Nafion impregnated electrospun $SiO_2$ membrane showed good thermal stability, satisfactory mechanical properties and high proton conductivity. The addition of the $SiO_2$:HPA nano-particle improved proton conductivity of the composite membrane, which allow further extension for operation temperature in low humidity environments. The composite membrane exhibited a promising properties for the application in high temperature PEMFC.

Wear Characteristics According of Heat Treatment of Si3N4 with Different Amounts of SiO2 Nano-Colloid (SiO2 나노 콜로이드 량이 다른 Si3N4의 열처리에 따른 마모 특성)

  • Ahn, Seok Hwan;Nam, Ki Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1117-1123
    • /
    • 2014
  • This study sintered $Si_3N_4$ with different amounts of $SiO_2$ nano-colloid. The surface of a mirror-polished specimen was coated with $SiO_2$ nano-colloid, and cracks were healed when the specimen was treated at a temperature of 1273 K for 1 h in air. Wear specimen experiments were conducted after heat treatments for 10 min at 1073, 1273, and 1573 K. The heat-treated surface that was coated with the $SiO_2$ nano-colloid was slightly rougher than the noncoated surface. The oxidation state of the surface according to the heat treatment temperature showed no correlation with the surface roughness. Moreover, the friction coefficient, wear loss, and bending strength were not related to the surface roughness. $Si_3N_4$ exhibited an abrasive wear behavior when SKD11 was used as an opponent material. The friction coefficient was proportional to the wear loss, and the bending strength was inversely proportional to the friction coefficient and wear loss. The friction coefficient and wear loss increased with increasing amounts of the $SiO_2$ nanocolloid. In addition, the friction coefficient was slightly increased by increasing the heat treatment temperature.

Study properties of soft subgrade soil stabilized by sewage sludge/lime and nano-SiO2

  • Lin, Deng-Fong;Luo, Huan-Lin;Chen, Chien-Ta;Cai, Ming-Du
    • Geomechanics and Engineering
    • /
    • v.10 no.6
    • /
    • pp.793-806
    • /
    • 2016
  • The pozzolanic characteristics of a sludge incinerated into ash were determined in this study. Lime is commonly used as a stabilizer for the treatment of soils, whereas sewage sludge ash (SSA) is often applied with lime to improve soft subgrade soil. In this study, a cohesive soil categorized as A-4 (low-plasticity clay) by AASHTO classifications was mixed with SSA/lime with a 3:1 ratio. Nano-$SiO_2$ was also added to the soil. To identify changes in the workability, strength, permeability, and shear strength of the soft subgrade soil, basic soil tests were conducted, and the microstructure of the treated soil was analyzed. The results indicate that SSA/lime mixtures improve the properties of soft subgrade soil and transform the soil from "poor subgrade soil" to "good to excellent subgrade soil" with a CBR > 8. Additionally, the addition of 2% nano-$SiO_2$ increases the unconfined compressive strength of soft subgrade soil treated with SSA/lime mixture by approximately 17 kPa. However, the swelling of the treated soil increased by approximately 0.1% after the addition of nano-$SiO_2$ and lime. Thus, soil swelling should be considered before lime and nano-$SiO_2$ are applied to soft subgrade soil.

Synthesis and Surface Properties of Hierarchical SiO2 Coating Layers by Forming Au Nanoparticles (금 나노입자 형성을 이용한 계층구조 SiO2 코팅층의 제조 및 표면 특성)

  • Kim, Ji Yeong;Kim, Eun-Kyeong;Kim, Sang Sub
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.53-58
    • /
    • 2013
  • Superhydrophobic $SiO_2$ layers with a micro-nano hierarchical surface structure were prepared. $SiO_2$ layers deposited via an electrospray method combined with a sol-gel chemical route were rough on the microscale. Au particles were decorated on the surface of the microscale-rough $SiO_2$ layers by use of the photo-reduction process with different intensities ($0.11-1.9mW/cm^2$) and illumination times (60-240 sec) of ultraviolet light. With the aid of nanoscale Au nanoparticles, this consequently resulted in a micro-nano hierarchical surface structure. Subsequent fluorination treatment with a solution containing trichloro(1H,2H,2H,2H-perfluorooctyl)silane fluorinated the hierarchical $SiO_2$ layers. The change in surface roughness factor was in good agreement with that observed for the water contact angle, where the surface roughness factor developed as a measure needed to evaluate the degree of surface roughness. The resulting $SiO_2$ layers revealed excellent repellency toward various liquid droplets with different surface tensions ranging from 46 to 72.3 mN/m. Especially, the micro-nano hierarchical surface created at an illumination intensity of $0.11mW/cm^2$ and illumination time of 60 sec showed the largest water contact angle of $170^{\circ}$. Based on the Cassie-Baxter and Young-Dupre equations, the surface fraction and work of adhesion for the micronano hierarchical $SiO_2$ layers were evaluated. The work of adhesion was estimated to be less than $3{\times}10^{-3}N/m$ for all the liquid droplets. This exceptionally small work of adhesion is likely to be responsible for the strong repellency of the liquids to the micro-nano hierarchical $SiO_2$ layers.

Improvement of Fast-Growing Wood Species Characteristics by MEG and Nano SiO2 Impregnation

  • DIRNA, Fitria Cita;RAHAYU, Istie;ZAINI, Lukmanul Hakim;DARMAWAN, Wayan;PRIHATINI, Esti
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.41-49
    • /
    • 2020
  • Jabon (Anthocephalus cadamba) is a fast-growing wood species that is widely utilized for light construction and other purposes in Indonesia. The objectives of the current study were to determine the effects of monoethylene glycol (MEG) and SiO2 nanoparticles (nano SiO2) impregnation treatment on the dimensional stability and density of jabon wood and to identify the characteristics of impregnated jabon wood. Wood samples were immersed in water (as untreated), MEG, 0.5% MEGSiO2, then impregnated by applying 0.5 bar of vacuum for 60 min, and then applying 2.5 bar of pressure for 120 min. The results showed that impregnation with MEG and Nano SiO2 had a significant effect on the dimensional stability of jabon wood. Polymers can fill cell walls in wood indicated by increasing weight percentgain, antiswelling efficiency, bulking effect, and density, then decreasing in water uptake value. Jabon wood morphology by using SEM showed that MEGSiO2 polymers can cover part of the pitsin the wood vessel wall of jabon. This finding was reinforced by EDX results showing that the silicon content was increased due to the addition of SiO2 nano. The XRD diffraction pattern indicated that MEGSiO2 treatment increased the degree of crystallinity in wood samples. Overall, treatment with 0.5% MEGSiO2 led to the most improvement in the dimensional stability of 5-year-old jabon wood in this study.

Comparison of structural and electrical properties of PMN-PT/LSCO thin films deposited on different substrates by pulsed laser deposition

  • Jiang, Juan;Chanda, Anupama;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.214-214
    • /
    • 2010
  • The 0.65Pb($Mg_{1/3}Nb_{2/3})O_3-0.35PbTiO_3$ (PMN-PT) thin films with $La_{0.5}Sr_{0.5}CoO_{3-\delta}$ (LSCO) bottom electrodes were grown on $CeO_2$/YSZ/Si(001), Pt/$TiO_2$/Si and $SrTiO_3$ (STO) substrates using conventional pulsed laser deposition (PLD) at a substrate temperature of $550^{\circ}C$. Since generally the crystallographic orientation of the bottom electrode induces the orientation of the films deposited on it, it allows us to observe the influence of the PMN-PT film orientation on the electrical properties. Phi scan done on PMN-PT/LSCO thin films shows epitaxial behavior of the films grown on sto substrates and $CeO_2$/YSZ buffered Si(001) substrates, and (110) texture on Pt/$TiO_2$/Si substrates. Polarization-electricfield (P-E) measurement shows good hysteresis behavior of PMN-PT films with remnant polarization of 18.2, 8.8, and $4.4{\mu}C/cm^2$ on $CeO_2$/YSZ/Si, Pt/TiO2/Si and STO substrates respectively.

  • PDF