• Title/Summary/Keyword: naltriben

Search Result 2, Processing Time 0.02 seconds

Naltriben Analogues as Peptide Anticancer Drugs

  • Kim, Min-Woo;Shin, Choon-Shik;Yang, Hee-Jung;Kim, Seung-Hyun;Lim, Hae-Young;Lee, Chul-Hoon;Kim, Min-Kyun;Lim, Yoong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.881-884
    • /
    • 2004
  • Apoptosis inducers for cancer therapy have been studied. Among hundreds of inducers, peptide anticancer drugs have many advantages such as being not harmful to humans, high selectivity, and dependence on their structures. Naltriben (NTB) is an octapeptide consisting of DPhe-Cys-Tyr-DTrp-Orn-Thr-Pen-Thr-$NH_2$. Several NTB analogues are known. In this experiment, apoptotic activities of NTB analogues with 8 amino acids were tested using flow cytometry. The conformational study of NTB was carried out using NMR spectroscopy and molecular modeling. Here, the relationships between conformations of NTB analogues and their apoptotic effects are reported.

Regulation of $[^3H]Norepinephrine$ Release by Opioids in Human Cerebral Cortex

  • Woo, Ran-Sook;Shin, Byoung-Soo;Kim, Chul-Jin;Shin, Min-Soo;Jeong, Min-Suk;Zhao, Rong-Jie;Kim, Kee-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.1
    • /
    • pp.1-3
    • /
    • 2003
  • To investigate the receptors mediating the regulation of norepinephrine (NE) release in human cerebral cortex slices, we examined the effects of opioid agonists for ${\mu}$-, ${\delta}$-, and ${\kappa}$-receptors on the high potassium (15 mM)-evoked release of [$^3H$]NE. [$^3H$]NE release induced by high potassium was calcium-dependent and tetrodotoxin-sensitive. [$D-Pen^2$, $D-Pen^5$]enkephalin (DPDPE) and deltorphin II (Delt II) inhibited the stimulated release of norepinephrine in a dose-dependent manner. However, Tyr-D-Ala-Gly-(Me)Phe-Gly-ol and U69,593 did not influence the NE release. Inhibitory effect of DPDPE and Delt-II was antagonized by naloxone, naltrindole, 7-benzylidenaltrexone and naltriben. These results suggest that both ${\delta}_1$ and ${\delta}_2$ receptors are involved in regulation of NE release in human cerebral cortex.