• Title/Summary/Keyword: nActivated Carbon

Search Result 368, Processing Time 0.025 seconds

Biochemical Characterization of Protease Produced by Cordyceps nutans

  • Kim, Seon Ah;Kim, Mi-Kyung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.44 no.4
    • /
    • pp.216-221
    • /
    • 2012
  • The fruiting body of Cordyceps is derived from the pupa or larva of insects infected by the entomopathogenic fungi Cordyceps. The fruiting body has been used as an anti-cancer and anti-inflammatory ingredient in traditional Chinese medicine. The biochemical characteristics of protease isolated from Cordyceps nutans were investigated in this study. The culturing period for production of protease by C. nutans was 10days. The acidity was pH 7.0, and the temperature was $25^{\circ}C$. The carbon and nitrogen sources for the production of the protease were glucose and yeast extract, respectively. The ratio of C/N was 2% glucose and 0.6% yeast extract. 0.06% $CuSO_4$ was used as the inorganic salt. The investigation into the acidity of the protease produced by C. nutans revealed that the optimal pH and temperature were pH 7.0 and $30^{\circ}C$. The stability of the protease was shown as pH 6.0~9.0 and $30{\sim}50^{\circ}C$. The investigation into the influence of the metal ions on the enzyme activation of C. nutans revealed that it was inhibited in $ZnSO_4$ and activated in $FeSO_4$.

  • PDF

The Influence of Support on Gas Mask Cobalt Catalysts for Low Temperature CO Oxidation (방독마스크용 코발트 촉매의 저온 일산화탄소 산화반응에서 지지체의 영향)

  • Kim, Deog-Ki;Kim, Bok-Ie;Shin, Chae-Ho;Shin, Chang-Sub
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.2 s.74
    • /
    • pp.35-45
    • /
    • 2006
  • Cobalt catalysts for gas mask loaded on various supports such as $Al_{2}O_{3},\;TiO_{2}$, AC(activated carbon) and $SiO_{2}$ were used to examine influences of calcination temperatures and reaction temperatures for CO oxidation. $Co(NO_{3})_2{\cdot}6H_{2}O$ was used as cobalt precursor and the catalysts were prepared by incipient wetness impregnation. The catalysts were characterized using XRD, TGA/DTA, TEM, $N_{2}$ sorption, and XPS. For the catalytic activity, support was in the order of ${\gamma}-Al_{2}O_{3}>TiO_{2}>SiO_{2}>AC\;and\;Al_{2}O_{3}$. The catalytic activity at lower temperature than $80^{\circ}C$ showed that with the increase of reaction temperature, cobalt catalysts on ${\gamma}-Al_{2}O_{3},\;TiO_{2},\;AC\$ has the negative activation energy but that of $SiO_{2}$ was positive.

Size Estimation of Microalgal System for Nitrogen Removal (미세조류를 이용한 질소제거 장치의 크기)

  • 김한욱;이우성;이철균
    • KSBB Journal
    • /
    • v.19 no.3
    • /
    • pp.236-240
    • /
    • 2004
  • Korean wastewaters have higher nitrogen concentrations than typical wastewaters of other countries. Most treatment processes such as activated sludge processes will need to supplement extra carbon sources for a complete removal of remaining nitrogen after the initial wastewater treatment, Because of these difficult matters, we have searched wastewater treatment methods that require no additional carbon sources. Wastewater treatment by microalgae in photobioreactors, using a green eukaryotic microalgae, Chlorella kessleri, showed a promising results and thus was selected to study further. This system is not intended to replace the conventional system but is to assist the existing biological treatment systems as a supplemental nitrogen removal process. Thus the secondary treated livestock wastewater was tested. Column type photobioreactors developed in our laboratory were used. When aerated with 5% CO$_2$ balanced with air at 1 vvm and illuminated at 100 ${\mu}$mol/㎡/s under 25$^{\circ}C$ and PH 7-8 by CO$_2$ buffering effect, the maximum nitrogen removal rate was 2.6 mg/L/hr. The results confirmed a possibility of microalgal wastewater treatment system as a secondary system to remove extra nitrogen sources. Based on these experimental results, the size of the optimal microalgal wastewater system was calculated. For the wastewater whose initial nitrogen concentration of 150 mg/L, the optimal batch system was found to be a 2 stage system with a combined retention time of 4.6 day. From the continuous experiments, nitrogen removal rates were examined under different dilution rates and 2 stage system was also found to be the optimal system. The combined retention time for the continuous system was 3.5 days. It is expected that conventional biological wastewater treatment systems followed by microalgal systems would reliably decrease the nitrogen concentration below the government criteria even for the livestock wastewater with low C/N ratio.

Adsorption of p-Xylene by Expanded Graphite (팽창흑연을 이용한 p-Xylene 흡착)

  • Lee, Chae-Young;Jee, Hyeong-Sub;Chung, Jae-Woo;Kim, Sang-Hyoun;Cho, Yun-Chul;Kang, Seok-Tae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.5
    • /
    • pp.35-40
    • /
    • 2012
  • In this study, adsorption characteristics of expanded graphite (EG) were investigated by a series of batch adsorption tests using p-Xylene as a model volatile organic compounds (VOCs). After acid treatment, graphite were expanded at various temperature from $600^{\circ}C$ to $1000^{\circ}C$ for one minute. The optimal temperature was $800^{\circ}C$, where the expansion ratio reached 195 times of original volume. The BET specific surface area of EG was $92.4m^2/g$, which was only 1/10 of granular activated carbon (GAC), however the adsorption of p-Xylene by EG was almost completed within 5 minutes while that of GAC continued for 7 days because the majority of pores of EG was consisted with meso- and macro-pores. According to the Langmuir isotherm analysis, the maximum specific adsorption of p-Xylene onto EG was 24.0 mg/L with the adsorption constant of 7.94. In conclusion, the adsorption capacity of EG was much less than that of GAC due to the significantly lower specific surface area, but the first order kinetic constant was more than 500 times larger than GAC. Overall, EG might be effective where the fast adsorption is required.

The Effect of Floating Wetland on Water Quality Improvement in a Eutrophic Lake (부유습지를 이용한 부영양수계 현장 수질개선 효과)

  • Park, Chae-Hong;Park, Myung-Hwan;Choi, Dong-Ho;Choi, Hyung-Joo;Lee, Joon-Heon;Lee, Myung-Hoon;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.116-127
    • /
    • 2013
  • At weekly intervals, we monitored continuous changes in water quality by constructed floating wetland equipped with the four different filter media (sponge, volcanic stone, activated carbon and magnesium hydroxide) in a eutrophic lake from March 2011 to May 2012. We also investigated phyto- and zooplankton communities both in the influent and the effluent water through the floating wetland. Over a 10-month time period, average turbidity (66%), suspended solids (79%) and chlorophyll-a (80%) concentrations were remarkably reduced in the effluent water compared to the influent (P<0.001). The average removal rates of $NO_2-N$ and $NH_3-N$ were 24% and 20%, respectively (P<0.05). The average removal rates of $NO_3-N$ and TN were less than 10% (P>0.05). On the other hand, the average removal rates of $PO_4-P$ and TP were more than 65% (P<0.01). Interestingly, the abundance of phytoplankton in the effluent was decreased about 2.6 times compared to that of the influent, whereas the abundance of zooplankton in the effluent was increased about 3.5 times compared to that of the influent. Overall, particulate matters (SS, Chl-a and TP) and dissolved nutrients ($NO_2-N$, $NH_3-N$ and $PO_4-P$) were particularly reduced at high rates. Therefore, application of our constructed floating wetland in a eutrophic lake improved the water quality and demonstrated a potential for algal bloom mitigation.

Reformation of Naphtha Cracking Bottom Oil for the Preparation of Carbon Fiber Precursor Pitch (탄소섬유용 프리커서 피치를 제조하기 위한 나프타 분해 잔사유의 개질)

  • Kim, Myoung Cheol;Eom, Sang Yong;Ryu, Seung Kon;Edie, Dan D.
    • Korean Chemical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.745-750
    • /
    • 2005
  • Naphtha cracking bottoms(NCB) oil was reformed by varying the heat treatment temperature, treatment time, and nitrogen flow rate in preparation of precursor pitch for isotropic pitch-based carbon fibers and activated carbon fibers. The reformed pitches were investigated in the yield, softening point, elementary analysis, and molecular weight distribution, and then the precursors reformed were melt spun to certify the optimum reforming conditions. The optimum precursor pitch was prepared when the NCB oil was reformed at $380^{\circ}C$, 3 h and 1.25 vvm $N_2$, and it's the softening point was around $240^{\circ}C$. The reforming resulted in product yield of 21 wt%. The C/H mole ratio of the precursor pitch increased from 1.07 to 1.34, the aromaticity increased from 0.85 to 0.88. The insolubles in benzene and quinoline were 30.0 wt% and 1.5 wt%, respectively. The spinning temperature was about $50^{\circ}C$ higher than the softening point. The molecular weights of the precursor components were distributed from 250 to 1250, and 80% of them were in the range of 250 to 700.

Adsorption Equilibrium, Kinetic and Thermodynamic Param (활성탄을 이용한 Acid Green 27의 흡착평형, 동역학 및 열역학 파라미터의 연구)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.514-519
    • /
    • 2017
  • Adsorption characteristics of acid green 27 dye using activated carbon were investigated as function of adsorbent dose, pH, initial concentration, contact time and temperature. Freundlich isotherm explained adsorption of acid green 27 dye very well and Freundlich separation factors (1/n=0.293~0.387) were found that this process could be employed as effective treatment method. Kinetic studies showed that the kinetic data were well described by the pseudo second-order kinetic model. Pseudo second rate constant ($k_2$) decreased with the increase in initial acid green 27 concentration. Activation energy (10.457 kJ/mol) and enthalpy (79.946 kJ/mol) indicated that adsorption process was physisorption and endothermic. Since Gibbs free energy decreased with increasing temperature, spontaneity of adsorption reaction increased with increasing temperature in the temperature range of 298 K~318 K.

Formation behaviour of Bromate in Processes of Advanced Water Treatment System using Nakdong river water (고도정수처리 공정에서 브로메이트의 거동 평가)

  • Kim, Young-Jin;Hyun, Kil-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.605-610
    • /
    • 2011
  • The objectives of this study are to investigate a bromate behaviour in the processes of advanced water treatment system (AWTS: preozonation, coagulator-settler, rapid sand filter, postozonation, biological activated carbon (BAC) beds) and to investigate the effects of ozonation, pH and ammonia nitrogen on bromate (${BrO^-}_3$) formation. As a result, $BrO_3$ was not detected in the processes of the AWTS without ozonation, while it was detected in a preozonated and postozonated water. For $BrO_3$ formation during June to November, the $BrO_3$ concentration of <9.4${\mu}g/L$ was observed in postozonated water, while it was reduced to about 46% by BAC beds. When applied ozone dosage and ozone contact time for influent with $Br^-$ of <0.3mg/L were 0.5-2.0mg/L.min and 10 min., $BrO_3$ concentration increased with increasing ozone dosage. Longer contact time and lower ozone level also was needed to inhibit the formation of $BrO_3$. At ozone dosage of 1.4 mg/L.min, the formation rate of $BrO_3$ increased with increase of pH value. When $NH_4-N$ concentration increased from 0.1mg/L to 0.4mg/L, $BrO_3$ concentration decreased to about 38%. These results revealed that $BrO_3$ concentration increased with increasing Br level, ozone dosage, and pH value, while it decreased with increase of $NH_4-N$ concentration.

Preparation of High Purity Ammonium Dinitramide and Its Liquid Mono-propellant (암모늄 디나이트라마이드염의 합성 및 액상연료화 연구)

  • Kim, Wooram;Park, Mijeong;Kim, Sohee;Jeon, Jong-Ki;Jo, Youngmin
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.591-596
    • /
    • 2019
  • A recently developed propellant, ammonium dinitramide (ADN, $NH_4N(NO_2)_2$ is stable and safe at an ambient condition. However, it requires high purity for practical applications. A very little quantity of foreign impurities in ADN may cause clogging of thruster nozzles and catalyst poisoning for the use of a liquid propellant. Thus, several purification processes for precipitated ADN particles such as repetition extraction, activated carbon adsorption and low-temperature extraction were presented in this study. The purifying methods helped to improve the chemical purity as evaluated by FT-IR and UV-Vis spectroscopy in addition to ion chromatography (IC) analyses. Among the purification processes, adsorption was found to be the best, showing a final purity of 99.8% based on relative quantification by IC. Thermal analysis revealed an exothermic temperature of $148^{\circ}C$ for the synthesized liquid monopropellant, but rose to $188^{\circ}C$ when urea was added.

Impact of Temperature and Alkalinity on Nitrogen Removal in the Start-up Period of Partial Nitrification in a Sequence Batch Reactor

  • Nguyen Van Tuyen;Tran Hung Thuan;Chu Xuan, Quang;Nhat Minh Dang
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.541-547
    • /
    • 2023
  • The effect of temperature and influent alkalinity/ammonia (K/A) ratio on the start-up of the partial nitrification (PN) process for an activated sludge-based domestic wastewater treatment was studied. Two different sequence batch reactors (SBR) were operated at 26 ℃ and 32 ℃. The relationship between temperature and the concentration of free ammonia (FA) and free acid nitrite (FNA) was investigated. A stable PN process was achieved in the 32 ℃ reactor when the influent ammonium concentration was lower than 150 mg-N/L. In contrast, the PN process in the 26 ℃ reactor had a higher nitrite accumulation rate (NAR) and ammonium removal efficiency (ARE) when the influent ammonia concentration was increased to more than 150 mg-N/L. Then three different ranges of the K/A ratio were applied to an SBR reactor. In the K/A range of 2.48~1.65, the SBR reactor achieved the highest NAR ratio (75.78%). This ratio helps to achieve the appropriate level of alkalinity to maintain a stable pH and provide a sufficient amount of inorganic carbon source for the activity of microorganisms. At the same time, FA and FNA values also reached the threshold to inhibit nitrite-oxidizing bacteria (NOB) without a significant effect on ammonia-oxidizing bacteria (AOB). Results showed that the control of temperature and K/A ratio during the start-up period may be important in establishing a stable and steady PN process for the treatment of domestic wastewater.