• Title/Summary/Keyword: n-chlorinated hydrocarbons

Search Result 5, Processing Time 0.019 seconds

Interrelationships of Fire and Explosion Properties for Chlorinated Hydrocarbons (염화탄화수소의 화재 및 폭발 특성치 간의 상관관계)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.126-132
    • /
    • 2002
  • By using the reference data, the empirical equations which describe the interrelationships of explosion properties and physical properties of n-chlorinated hydrocarbons have been derived. The properties which have been correlated are the lower and upper explosive limits, the stoichiometric coefficients, the heats of combustion, the carbon numbers. Also, the new equations using the mathematical and statistical methods for predicting the temperature dependence of lower explosive limits(LEL) of chlorinated hydrocarbons on the basis of the literature data are proposed. The fire and explosion properties calculated by the proposed equations in this research were a good agrement with literature data within a few A.A.P.E.(Average Absolute Percent Error) and A.A.D.(Average Absolute Deviation.) From a given explosive properties, by using the proposed equations, it is possible to predict to the fire and explosion characteristics for the other chlorinated hydrocarbons.

Studies on Telomerization (I) Telomerization of Vinyl Acetate with Chlorinated Hydrocarbons (Telomerization 에 關한 硏究 (I) Vinyl Acetate 와 Chlorinated Hydrocarbons 과의 Telomerization 에 關하여)

  • Shim, Jyong-Sup;Hong, Suck-Joo
    • Journal of the Korean Chemical Society
    • /
    • v.6 no.1
    • /
    • pp.88-93
    • /
    • 1962
  • The telomerization of vinyl acetate with carbon tetrachloride, chloroform and monochlorobenzene were investigated with respect to the synthesis of those telomers, properties and molecular weights of the formed telomers, and reaction mechanisms. Vinyl acetate reacted with carbon tetrachloride and chloroform to form telomers at 70-90$^{\circ}C$ and 60-70$^{\circ}C$, respectively and it formed polymer with monochlorobenzene. As a chain transfer agent, carbon tetrachloride was more effective than chloroform. In the telomerization of vinyl acetate and carbon tetrachloride: 1) The average molecular weight of the telomer decreased as the mole ratio of carbon tetrachloride to vinyl acetate increased. The optimum conditions for the highest yield of the telomer were as follows: Mole ratio of carbon tetrachloride to vinyl acetate : 2.5 Reaction time : 20 hours. 2) As the reaction proceeded, the refractive index and average molecular weight of the telomer increased rapidly in the first 10 hours but the increase was slow through the next 10 hours, so that, the average recurring number(n) of taxogen in the final product reached an almost definite value, i.e., 3. The telomer formed in the telomerization of vinyl acetate with carbon tetrachloride and chloroform turned to brown color in the air due to decomposition or polymerization. The suggested telomerization mechanism was supported by the hexachloroethane detected in the course of reaction.

  • PDF

Degradation of Chlorinated Hydrocarbons via a Light-Emitting Diode Derived Photocatalyst

  • Jo, Wan-Kuen;Lee, Joon Yeob
    • Environmental Engineering Research
    • /
    • v.18 no.1
    • /
    • pp.21-28
    • /
    • 2013
  • In this study, the applicability of visible light-emitting-diodes (LEDs) to the photocatalytic degradation of indoor-level trichloroethylene (TCE) and perchloroethylene (PCE) over N-doped $TiO_2$ (N-$TiO_2$) was examined under a range of operational conditions. The N-$TiO_2$ photocatalyst was calcined at $650^{\circ}C$ (labeled N-650) showed the lowest degradation efficiencies for TCE and PCE, while the N-$TiO_2$ photocatalysts calcined at $350^{\circ}C$, $450^{\circ}C$, and $550^{\circ}C$ (labeled as N-350, N-450, and N-550, respectively) exhibited similar or slightly different degradation efficiencies to those of TCE and PCE. These results were supported by the X-ray diffraction patterns of N-350, N-450, N-550, and N-650. The respective average degradation efficiencies for TCE and PCE were 96% and 77% for the 8-W lamp/N-$TiO_2$ system, 32% and 20% for the violet LED/N-$TiO_2$ system, and ~0% and 4% for the blue LED/N-$TiO_2$ system. However, the normalized photocatalytic degradation efficiencies for TCE and PCE for the violet LED-irradiated N-$TiO_2$ system were higher than those from the 8-W fluorescent daylight lamp-irradiated N-$TiO_2$ system. Although the difference was not substantial, the degradation efficiencies exhibited a decreasing trend with increasing input concentrations. The degradation efficiencies for TCE and PCE decreased with increasing air flow rates. In general, the degradation efficiencies for both target compounds decreased as relative humidity increased. Consequently, it was indicated that violet LEDs can be utilized as energy-efficient light sources for the photocatalytic degradation of TCE and PCE, if operational conditions of N-$TiO_2$ photocatalytic system are optimized.

Development and Application of an In Situ Technology to Treat Various Soil and Groundwater Contaminants

  • Goltz, Mark N.
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.10a
    • /
    • pp.89-110
    • /
    • 2003
  • The limitations of conventional soil and groundwater contamination remediation technologies have motivated a search for innovative technologies; particularly in situ technologies that do not require extraction of contaminants from the subsurface. All engineered in situ remediation systems require that the contaminant be mixed with a remedial compound. Horizontal flow treatment wells (HFTWs), an innovative technology that consists of a pair of dual-screened treatment wells, were used at a trichloroethylene (TCE) contaminated site to efficiently achieve this mixing of contaminant and remedial compound in order to effect in situ bioremediation (McCarty et al., 1998). In this paper, the potential of HFTWs to treat chlorinated aliphatic hydrocarbons (CAHs) as well as other soil and groundwater contaminants of concern, such as nitroaromatic compounds (NACs), perchlorate, and methyl-tert-butyl ether (MTBE), is examined. Through a combination of laboratory studies, model analyses, and field evaluations, the effectiveness of this innovative technology to manage these contaminants is investigated.

  • PDF

Evaluation of Concentration Polarization at Feed in the Permeation of VOCs/$N_2$ mixtures through PDMS membrane (VOCs/질소 혼합물 증기투과시 공급액부 경계층에서의 농도분극 분석을 위한 모델식 확립)

  • 염충균;이상학;최정환;이정민
    • Membrane Journal
    • /
    • v.11 no.2
    • /
    • pp.74-82
    • /
    • 2001
  • By using a phenomenological approach, model equations incorporating the resistance-in¬series concept were established to evaluate quantitatively concentration polarization in the boundary layer in feed adjacent to the membrane surface in the vapor permeation and separation of volatile organic compounds (VOCS)/$N_2$ mixture through po]y(dimethylsiloxane) (PDMS) membrane. The vapor permeations of various VOCS/$N_2$ mixtures through PDMS membrane were carried out at various feed flow rates. Chlorinated hydrocarbons, such as, methylene chloride, chlorofonn, 1,2-clichloroethane and 1,1,2-trichloroethane were used as organic vapor. By fitting the model equations to the experimental penneation data. the model parameters were detennined. respectively. Both the mass transfer coefficient of VOC across tbe boundary layer and concentration polarization modulus as a measure of the extent of concentration polarization were eitimated Quantitatively by the mooe1 equations with the determined model parameters. From the analysis on the detennined model parameters, the boundary layer resistance due to the concentration polarization of VOCs component was found to be more significant when the condensability of voe was greater. This study seeks to emphasize the importance of the boundary resistance on the vapor penneation of the vapor/gas mixtures with high permeability and high selectivity towards the minor component VOC.

  • PDF