• Title/Summary/Keyword: n-Shaped Slot

Search Result 7, Processing Time 0.019 seconds

Open Ended Folded-Slot Antenna with a Wide n-Shaped Slot for Ultra-Wideband Applications

  • Yoo, Jin-Ha;Lee, Young-Soon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.83-89
    • /
    • 2020
  • A microstrip feedline based open ended folded-slot antenna is proposed for ultra-wideband (UWB) applications. The prototype of the proposed antenna is fabricated on the FR4 dielectric substrate. The proposed antenna has a wide n-shaped slot that is useful for designing circuit components on the same printed circuit board (PCB) as that of the radio frequency (RF) modules. The proposed antenna use two kinds of slots as radiators, and each slots have different characteristics because of the different type of ends of the slot. The wideband characteristic can be obtained by resonances of each slot which are occurred at different frequencies. The measured impedance bandwidth (S11≤ -10 dB) is 2.9-11.56 GHz, and the antenna peak gain is 2-4 dBi over the UWB range. The antenna has a stable omni-directional radiation pattern and only a small group-delay variation across the UWB passband. In addition, we present a modified design with band-notched characteristics of a 5 GHz wireless local area network (WLAN) frequency band.

Design and Fabrication of Wireless LAN for Miniaturized Microstrip Antenna (소형화를 위한 무선랜 대역의 마이크로스트립 안테나 설계 및 제작)

  • Lee Won-Jong;Kim Yong-Kyun;Kang Suk-Youb;Lee Hwa-Choon;Yoon Cheul;Park Hyo-Dal
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9A
    • /
    • pp.906-912
    • /
    • 2006
  • In this paper, N-shaped slot antenna for $5.15GHz{\sim}5.35GHz$ is designed, fabricated, and measured. The prototype consist of meander corrugated N-shaped slot. To obtain suitable bandwidth, the form layer is inserted between ground plane and substrate. Important parameters in the design are N-slot length, width, position, air-gap height, and feed point position. From these parameters optimized, a four N-shaped slot antenna is fabricated and measured. The measured results of the antenna are obtained as follows results. The resonant frequency of the fabrication N-shaped slot antenna is 5.25GHz bandwidth for approximately 300MHz(VSWR<2.0) and the gain is $1.3{\sim}2.64dBi$. The experimental far-field patterns are stable across the pass band. The 3dB bandwidth in H-Plane and E-Plane are $80.21^{\circ}\;and\;103.38^{\circ}$, respectively.

Design of CPW-Fed Printed Monopole Antenna for CDMA/WLAN (CDMA/WLAN 겸용 CPW 급전 인쇄형 모노폴 안테나 설계)

  • Nam, Ju-Yeol;Song, Won-Ho;Lee, Young-soon
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.623-629
    • /
    • 2015
  • In the present study, a coplanar waveguide (CPW)-fed printed monopole antenna with an inverted n-shaped slot is newly proposed for dual band operations which cover bandwidths of CDMA (1.85~2.025 GHz) and WLAN (2.4~2.484 GHz) as well as implementation of omnidirectional radiation pattern. For enhancement of impedance bandwidth ($S11{\leq}10dB$) in 2.4 GHz WLAN frequency band, an inverted n-shaped slot instead of the previous n-shaped slot is etched on the printed radiating monopole. The proposed antenna is designed and fabricated on one side of FR4 substrate with dielectric constant of 4.4, thickness of 1.6 mm, and size of $50{\times}25mm^2$. It has been observed that the measured impedance bandwidths are 280 MHz (1.84~2.12 GHz) in frequency band of CDMA and 420 MHz (2.38~2.8 GHz) in WLAN frequency band respectively. It is noticeable that impedance bandwidth in 2.4 GHz frequency band of WLAN is enlarged to three times due to use of inverted L-shaped slot in comparison with impedance bandwidth 140 MHz (2.39~2.53 GHz) obtained by use of the previous n-shaped slot. In addition, good omnidirectional radiation patterns have been observed over the entire frequency band of interest.

The Characteristic of L-shape and Triangular Slot Antenna

  • Narkcharoen, K.;Charkrit, P.;Anantrasirichai, N.;Wakabayashi, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1680-1683
    • /
    • 2003
  • To describe the performance of an antenna, some parameters are necessary. Some of the parameters are interrelate and not all of them must be specified for complete description of antenna performance. The parameters in characteristics of printed antenna for this analysis are radiation pattern, input impedance, VSWR, S parameter and electromagnetic field. In this paper we will consider two shaped of slot antennas one is triangular slot antenna and other is L - shape slot antenna for compare the radiation pattern, return loss, and VSWR. Two slot antennas are designed to have a resonant frequency at 10 GHz. The microstrip line is designed to be 50 ohms in order to match the measurement system, it has the substrate of the thickness = 1.52 mm and dielectric constant (${\varepsilon}_r$) 2.17. The problem space in the FDTD analysis are $60{\times}123{\times}100$ cells for L-shape slot antenna and $50{\times}171{\times}120$ cells for triangular slot antenna with the cell dimensions ${\Delta}x=0.152\;mm.$, ${\Delta}y={\Delta}z=0.15\;mm.$

  • PDF

L-shaped Slot Antenna for WLAN MIMO Application (무선랜 MIMO용 L-형 슬롯 안테나)

  • Song, Won-Ho;Nam, Ju-Yeol;Lee, Ki-Yong;Lee, Young-soon
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.4
    • /
    • pp.344-351
    • /
    • 2016
  • In the present study, a dual-band multiple-input-multiple-output (MIMO) antenna covering WLAN frequency bands of 2.4 GHz (2.4 ~ 2.484 GHz) and 5 GHz (5.15 ~ 5.825 GHz) is newly presented to avoid use of decoupling structure for increasing isolation. The antenna consists of two L-shaped slots with n-shaped slots etched on the floating ground plane surrounded by open ended L-shaped slots which are placed in the left and right corner of PCB respectively. The proposed antenna is designed and fabricated on one side of FR4 substrate with dielectric constant of 4.3, thickness of 1.6 mm, and size of $50{\times}50mm2$. It has been observed that the measured impedance bandwidths ($S_{11}{\leq}-10dB$) are 0.3 GHz (2.28 ~ 2.58 GHz) in 2.4 GHz frequency band and 0.89 GHz (5.11 ~ 6 GHz) in 5 GHz frequency band respectively. In addition, It has been observed that the whole efficiency are more than 80 % in the whole operating frequency band and envelope correlation coefficient of the antenna is less than 0.05 as a very small value in spite of nothing of the decoupling structure.

STRESS DISTRIBUTION IN ESTHETIC ORTHODONTIC BRACKETS : AN ANALYSIS USING THE FINITE ELEMENT METHOD (유한요소 분석을 통한 심미적 교정 브라켓의 응력 및 구조분석에 관한 연구)

  • Lee, Won-You;An, Ju-Sam;Park, Young-Cheol;Park, Myeong-Kyun;Sohn, Hong-Bum;Jeong, Si-Dong
    • The korean journal of orthodontics
    • /
    • v.28 no.1 s.66
    • /
    • pp.43-49
    • /
    • 1998
  • The aim of this study were to measure and compare the stress level on three type brackets and each other material (stainless steel, ceramic) with tipping and torquing forces by using the finite element analysis and to design biomechanically favorable brackets. For this study, three kinds of brackets were selected(A:Transcend-RMO, B:Signature-Unitek, C:PAW: plain archwire appliance-applied for a patent in Yonsei Udiversity). The slot size of bracket was 0.022inch and the size of archwire was 0.0175x0.025inch and taper shaped archwire was used in PAW. Loading force in tipping was 4.27N and torquing force was 32.858N applied by archwire torsion with 19.7degree and 11.3 degree in C type bracket. The conclusions were that (1) The finite element method proved to be a useful tool in the stress analysis of orthodontic bracket subjected to various forces. (2) With tipping, the stresses were concentrated at the gingival wall of the wire slot where it meets the mesial bracket surface and the incisal wall of the wire slot where it meets the distal bracket surface and with torquing, the stresses were concentrated at the junction of the gingival or incisal wall and base of the slot. (3) The maximum stress value was higher in torquing force than tipping force and therefore it is desirable to design on the basis of torquing force. (4) It was considered that the change in material might be affect on the diminish of stress value in the place of stess concentration. (5) The maximum stress value was highest on PAW bracket when the tipping and torquing force was applied and therefore it would be desirable to use mechanically favorable material on PAW bracket.

  • PDF

Studies on Miniaturization and Notched Wi-Fi Bandwidth for UWB Antenna Using a Wide Radiating Slot (넓은 방사 슬롯을 이용한 초광대역 안테나의 소형화와 Wi-Fi 대역의 노치에 관한 연구)

  • Beom, Kyeong-Hwa;Kim, Ki-Chan;Jo, Se-Young;Ko, Young-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.2
    • /
    • pp.265-274
    • /
    • 2011
  • In this paper, it is studied on wide radiating slot antenna's miniaturization for ultra wide-band(UWB) technologies and notch structure to prevent interference between UWB systems and existing wireless systems for using Wi-Fi service of IEEE standards 802.11 a/n. Proposed antenna that wide slot is decreased from $\lambda/2$ to $\lambda/4$ length of resonant frequency has decreased by 72 % compared with conventional antenna. And optimized T-shaped CPW-fed stub has satisfied UWB bandwidth for 3.0~11.8 GHz. Then, creating 2-order Hilbert curve slot line in the stub's patch area, 4.9~5.6 GHz that centered frequency is 5 GHz is eliminated. Finally, the designed antenna constructed on FR4-epoxy has $20{\times}15\;mm^2$ dimension. The measured results that are obtained return loss under -10 dB through 3.2~11.8 GHz without Wi-Fi bandwidth, a linear phase characteristic, a stable group delay, and omnidirectional radiation patterns are presented.