• Title/Summary/Keyword: n-Buthyl methacrylate(BMA)

Search Result 2, Processing Time 0.019 seconds

A Characteristics of Environmental Fraternitive Photopolymerization and Thermal Degradation on Butyl Methacrylate (부틸메타크릴레이트의 환경친화적인 광중합 및 열분해특성)

  • Choi, Jae-Wook;Seul, Soo-Duck;Lee, Nae-Woo
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.2
    • /
    • pp.45-51
    • /
    • 2002
  • This study is the series of photopolymerization on alkyl methacrylate(AMA) to continue further research. The objective of this work is to investigate the environmental fraternitive characteristics of photopolymerization kinetics on n-Buthyl methacrylate(BMA) and comparing the decomposition behavior to other AMA. The experiment was done in aqueous solution under the influence of photo-initiator concentration$(0.05{\sim}0.25mol/l)$, light intensity$(5000{\sim}9000{\mu}J/cm^{2})$ and monomer concentration$(2.0{\sim}6.0mol/l)$. n-BMA was polymerized to high conversion ratio using hydrogen $peroxide(H_{2}O_{2})$, and the kinetics model we have obtained is as follows. $R_{p}=K_{p}[S]^{0.24}[M]^{0.33}[L]^{153}exp^{(27.19/RT)}$ The differential method of thermogravimetric analysis(Friedman method) was used to obtain value of activation energy on decomposition reaction. The average value of it was 27.5Kcal/mol.

Study on the Preparation and Characterization of Ophthalmic Polymer with High and Low-Water Content

  • Lee, Min-Jae;Sung, A-Young
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.6
    • /
    • pp.346-351
    • /
    • 2017
  • This study was planned considering the chain length, hydrophilicity, and hydrophobicity of the additives to be used in the polymerization, while various ophthalmic lenses that use various additives with similar water contents were manufactured before their optical and physical properties were compared and analyzed. With regard to the additives required for manufacturing high-, medium-, and low-water content lens groups, HEA (hydroxyethyl acrylate), PVP (polyvinylpyrrolidone), and NMV(N-methyl-N-vinylacetamide) were used as additives for preparing the high-water content lens group, HEMA(2-hydroxyethyl methacrylate), HPMA(hydroxypropyl methacrylate) and BD(1,4-butanediol) were used for the medium-water content lens group. For the low-water content lens group, BMA(buthyl methacrylate), BDDA(1,4-butanediol diacrylate), and Bis-GMA(bisphenol A glycerolate diacrylate) were used, respectively. The average water content of HEA was 40.14%; that of PVP, 39.63%; and that of NMV, 40.52%. The mean of water content was 35.92% for HEMA, 35.74% for BD, and 34.62% for HPMA. For the low-water content lens group, the mean of water content was 26.69% for BMA, 27.76% for BDDA, and 26.14% for Bis-GMA. With regard to the results of the water content measurement using a moisture analyzer, the average water content of the high-water content lens group was 41.34% for HEA, 42.62% for PVP, and 42.73% for NMV. Finally, for the low-water content lens group, the average water content was 28.62% for BMA, 28.82% for BDDA, and 28.32% for Bis-GMA. The measurements of the water contents of the lenses using the two methods showed that the water content and refractive index of the lenses were similar in all the lens groups. The measurements of the contact angles, however, showed a different wettability value for each lens with a similar water content. Also, the change tendency of the lens curvature according to the change of time showed that the change amount became larger and the recovery time became longer from the lens samples with a lower water content to those with a higher water content. Based on these results that will be helpful for the study of ophthalmic lenses.