• Title/Summary/Keyword: n type Si

Search Result 866, Processing Time 0.03 seconds

Fabrication and Characteristics of a Varactor Diode for UHF TV Tuner Operated within Low Tuning Voltage (저전압 UHF TV 튜너용 바렉터 다이오드의 제작 및 특성)

  • Kim, Hyun-Sik;Moon, Young-Soon;Son, Won-Ho;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.185-191
    • /
    • 2014
  • The width of depletion region in a varactor diode can be modulated by varying a reverse bias voltage. Thus, the preferred characteristics of depletion capacitance can obtained by the change in the width of depletion region so that it can select only the desirable frequencies. In this paper, the TV tuner varactor diode fabricated by hyper-abrupt profile control technique is presented. This diode can be operated within 3.3 V of driving voltage with capability of UHF band tuning. To form the hyperabrupt profile, firstly, p+ high concentration shallow junction with $0.2{\mu}m$ of junction depth and $1E+20ions/cm^3$ of surface concentration was formed using $BF_2$ implantation source. Simulation results optimized important factors such as epitaxial thickness and dose quality, diffusion time of n+ layer. To form steep hyper-abrupt profile, Formed n+ profile implanted the $PH_3$ source at Si(100) n-type epitaxial layer that has resistivity of $1.4{\Omega}cm$ and thickness of $2.4{\mu}m$ using p+ high concentration Shallow junction. Aluminum containing to 1% of Si was used as a electrode metal. Area of electrode was $30,200{\mu}m^2$. The C-V and Q-V electric characteristics were investigated by using impedance Analyzer (HP4291B). By controlling of concentration profile by n+ dosage at p+ high concentration shallow junction, the device with maximum $L_F$ at -1.5 V and 21.5~3.47 pF at 0.3~3.3 V was fabricated. We got the appropriate device in driving voltage 3.3 V having hyper-abrupt junction that profile order (m factor) is about -3/2. The deviation of capacitance by hyper-abrupt junction with C0.3 V of initial capacitance is due to the deviation of thermal process, ion implantation and diffusion. The deviation of initial capacitance at 0.3 V can be reduced by control of thermal process tolerance using RTP on wafer.

Evaluation and Prediction of Failure Hazard Area by the Characteristics of Forest Watershed (산림유역 특성에 의한 붕괴 위험지역의 평가 및 예지)

  • Jeong, Won-Ok;Ma, Ho-Seop
    • Korean Journal of Environment and Ecology
    • /
    • v.20 no.4
    • /
    • pp.415-424
    • /
    • 2006
  • This study was carried out to analyze the characteristics of forest watershed factors by using the quantification theory(I) for evaluation and prediction of the failure hazard area. Present $sediment(m^3/yr/ha)$ of erosion control dams were investigated in 95 sites of erosion control dam constructed during 1986 to 1999 in Gyeongnam province. The results obtained from this study were summarized as follows; General condition of class I(Very hazard area) were as follow; Igneous rock in parent rock, coniferous in forest type, below 20year in stand age, below 30cm in soil depth, SCL in soil texture, $31{\sim}40%$ in gravel contents, $S{\sim}E$ in aspect, $2,501{\sim}3,600m$ in length of main stream, $26{\sim}30$ in number of total streams, $6,601{\sim}10,000m$ in length of total streams, over 3 in stream order, over 16 in number of first streams order and over $31^{\circ}$ of slope gradient. General condition of class IIl(hazard area) were as follow; Metamorphic rock in parent rock, hardwood in forest type, over $21{\sim}24year$ in stand age, $31{\sim}40cm$ in soil depth, SiCL or SCL in soil texture, $11{\sim}20%$ in gravel contents, $S{\sim}W$ in aspect, $1,501{\sim}2,600m$ in length of main stream, $6{\sim}10$ in number of total streams, $3,501{\sim}5,500m$ in length of total streams, 2 in stream order, $6{\sim}10$ in number of first streams order and over $31^{\circ}$ of slope gradient. General condition of class III(Un hazard area) were as follow; Sedimentary rock in parent rock, mixed in forest type, over 25year in stand age, $41{\sim}50cm$ in soil depth, SiCL in soil texture, below 10% in gravel contents, $N{\sim}W$ in aspect, below 500m in length of main stream, below 5 in number of total streams, below 1,000m in length of total treams, below 1 in stream order, below 2 in number of first streams order and below $25^{\circ}$ of slope gradient. The prediction method of suitable for failure hazard area divided into class I, II, and III for the convenience of use. The score of class I evaluated as a very hazard area was over 4.8052. A score of class II was 4.8051 to 2.5602, it was evaluated as a hazard area, and class III was below 2.5601, it was evaluated as a un hazard area.

A Study on the Annealing Effect of SnO Nanostructures with High Surface Area (높은 표면적을 갖는 SnO 나노구조물의 열처리 효과에 관한 연구)

  • Kim, Jong-Il;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.536-542
    • /
    • 2018
  • Tin dioxide, $SnO_2$, is a well-known n-type semiconductor that shows change in resistance in the presence of gas molecules, such as $H_2$, CO, and $CO_2$. Considerable research has been done on $SnO_2$ semiconductors for gas sensor applications due to their noble property. The nanomaterials exhibit a high surface to volume ratio, which means it has an advantage in the sensing of gas molecules. In this study, SnO nanoplatelets were grown densely on Si substrates using a thermal CVD process. The SnO nanostructures grown by the vapor transport method were post annealed to a $SnO_2$ phase by thermal CVD in an oxygen atmosphere at $830^{\circ}C$ and $1030^{\circ}C$. The pressure of the furnace chamber was maintained at 4.2 Torr. The crystallographic properties of the post-annealed SnO nanostructures were investigated by Raman spectroscopy and XRD. The change in morphology was confirmed by scanning electron microscopy. As a result, the SnO nanostructures were transformed to a $SnO_2$ phase by a post-annealing process.

Effect of RTA on Leakage Current of $Ta_2O_5$ Thin Films Deposited by PECVD (PECVD법으로 증착된 $Ta_2O_5$박막의 누설전류에 미치는 RTA의 영향)

  • Kim, Jin-Beom;Lee, Seung-Ho;So, Myeong-Gi
    • Korean Journal of Materials Research
    • /
    • v.4 no.5
    • /
    • pp.550-555
    • /
    • 1994
  • The effects of RTA treatment on the leakage current have been studied for tantalum pentoxide( $Ta_2O_5$) films deposited by PECVD on P-type(100) Si substrate using $TaCl_5$(99.99%) and $N_2O$(99.99%) gaseous mixture. The refractive index increased with increasing the deposition temperature and the maximum deposition rate was obtained at $500^{\circ}C$. The Ta-0 bond peak intensity of as-deposited $Ta_2O_5$ increased with increasing the deposition temperature through FT-IR analysis and the leakage current value was decreased with increasing the deposition temperature. The small leakage current value obtained after RTA treatment of as-deposited $Ta_2O_5$ was found to be due to the reduction of 0-deficient structure in the film. The increases of the oxygen coacentration and the Ta-0 bond peak intensity in the film after RTA treatment were measured by AES and FT-IR analyses.

  • PDF

Efficient Red-Color Emission of InGaN/GaN Double Hetero-Structure Formed on Nano-Pyramid Structure

  • Go, Yeong-Ho;Kim, Je-Hyeong;Gong, Su-Hyeon;Kim, Ju-Seong;Kim, Taek;Jo, Yong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.174-175
    • /
    • 2012
  • (In, Ga) N-based III-nitride semiconductor materials have been viewed as the most promising materials for the applications of blue and green light emitting devices such as light-emitting diodes (LEDs) and laser diodes. Although the InGaN alloy can have wide range of visible wavelength by changing the In composition, it is very hard to grow high quality epilayers of In-rich InGaN because of the thermal instability as well as the large lattice and thermal mismatches. In order to avoid phase separation of InGaN, various kinds of structures of InGaN have been studied. If high-quality In-rich InGaN/GaN multiple quantum well (MQW) structures are available, it is expected to achieve highly efficient phosphor-free white LEDs. In this study, we proposed a novel InGaN double hetero-structure grown on GaN nano-pyramids to generate broad-band red-color emission with high quantum efficiency. In this work, we systematically studied the optical properties of the InGaN pyramid structures. The nano-sized hexagonal pyramid structures were grown on the n-type GaN template by metalorganic chemical vapor deposition. SiNx mask was formed on the n-type GaN template with uniformly patterned circle pattern by laser holography. GaN pyramid structures were selectively grown on the opening area of mask by lateral over-growth followed by growth of InGaN/GaN double hetero-structure. The bird's eye-view scanning electron microscope (SEM) image shows that uniform hexagonal pyramid structures are well arranged. We showed that the pyramid structures have high crystal quality and the thickness of InGaN is varied along the height of pyramids via transmission electron microscope. Because the InGaN/GaN double hetero-structure was grown on the nano-pyramid GaN and on the planar GaN, simultaneously, we investigated the comparative study of the optical properties. Photoluminescence (PL) spectra of nano-pyramid sample and planar sample measured at 10 K. Although the growth condition were exactly the same for two samples, the nano-pyramid sample have much lower energy emission centered at 615 nm, compared to 438 nm for planar sample. Moreover, nano-pyramid sample shows broad-band spectrum, which is originate from structural properties of nano-pyramid structure. To study thermal activation energy and potential fluctuation, we measured PL with changing temperature from 10 K to 300 K. We also measured PL with changing the excitation power from 48 ${\mu}W$ to 48 mW. We can discriminate the origin of the broad-band spectra from the defect-related yellow luminescence of GaN by carrying out PL excitation experiments. The nano-pyramid structure provided highly efficient broad-band red-color emission for the future applications of phosphor-free white LEDs.

  • PDF

The Methane Reforming by $CO_2$ Using Pelletized Co-Ru-Zr-Si Catalyst (성형 Co-Ru-Zr-Si 촉매를 이용한 이산화탄소에 의한 메탄 리포밍)

  • Nam, Jeong-Kwang;Lee, Ji-Hye;Song, Sang-Hoon;Ahn, Hong-Chan;Chang, Tae-Sun;Suh, Jeong-Kwon;Kim, Seong-Bo
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.176-182
    • /
    • 2012
  • The methane dry reforming has received the considerable attention in recent years, mainly as an attractive route to produce synthesis gas (CO, $H_2$) from green-house gases ($CH_4$, $CO_2$) for resources. However, this process has not been commercialized due to the high temperature and catalyst deactivation. In this study, Co-Ru-Zr catalysts supported on $SiO_2$ were studied for the characterization of methane dry reforming reaction and the preliminary data for process development were achieved. The crystal structure of catalysts was measured by XRD, the surface area and pore size were analyzed by BET, and the element composition of catalyst were analyzed by EDS. Conversions of methane and carbon dioxide were analyzed by GC. In addition, reaction rate constants were obtained from the reaction kinetic study and the optimum catalyst size that does not affect mass transfer from reactants was also determined. The selected pellet-type catalyst maintained activation for 720 h at $850^{\circ}C$.

Growth and characterization of GaAs and AlGaAs with MBE growth temperature (MBE 성장온도에 따른 GaAs 및 AlGaAs의 전기광학적 특성)

  • Seung Woong Lee;Hoon Young Cho;Eun Kyu Kim;Suk-Ki Min;Jung Ho Park
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.1
    • /
    • pp.11-20
    • /
    • 1994
  • GaAs and AlGaAs epi-layers were grown on semi-insulating (100) GaAs substrate by molecular beam epitaxy (MBE) and their electrical and optical properties have been investigated by several measurements. In undoped GaAs, the p-type GaAs layers with the good surface morphology were obtained under the growth conditions of the substrate temperatures ranging from 570 to $585^{\circ}C$ and the $As_4$/Ga ratios from 17 to 22. In the samples with the growth rates of the ranges of $0.9~1.1 {\mu}m/h$, the impurity concentrations were in the ranges of $1.5{\times}10^{14}~5.6{\times}10^{14}cm^{-3}$ with the Hall mobilities of $590~410cm^2/V-s$. In the Si-doped GaAs, the n-type GaAs layers with low electro trap, only two hole deep levels were observed with uniform doping profiles (<1%). AlGaAs layers with good surface morphology and crystallinity were grown under an optimum condition of the substrate temperature, $600^{\circ}C $. 8 deep level defects were observed between 0.17~0.85eV in undoped AlGaAs layers.

  • PDF

Microtube Light-Emitting Diode Arrays with Metal Cores

  • Tchoe, Youngbin;Lee, Chul-Ho;Park, Junbeom;Baek, Hyeonjun;Chung, Kunook;Jo, Janghyun;Kim, Miyoung;Yi, Gyu-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.287.1-287.1
    • /
    • 2016
  • Three-dimensional (3-D) semiconductor nanoarchitectures, including nano- and micro- rods, pyramids, and disks, are emerging as one of the most promising elements for future optoelectronic devices. Since these 3-D semiconductor nanoarchitectures have many interesting unconventional properties, including the use of large light-emitting surface area and semipolar/nonpolar nano- or micro-facets, numerous studies reported on novel device applications of these 3-D nanoarchitectures. In particular, 3-D nanoarchitecture devices can have noticeably different current spreading characteristics compared with conventional thin film devices, due to their elaborate 3-D geometry. Utilizing this feature in a highly controlled manner, color-tunable light-emitting diodes (LEDs) were demonstrated by controlling the spatial distribution of current density over the multifaceted GaN LEDs. Meanwhile, for the fabrication of high brightness, single color emitting LEDs or laser diodes, uniform and high density of electrical current must be injected into the entire active layers of the nanoarchitecture devices. Here, we report on a new device structure to inject uniform and high density of electrical current through the 3-D semiconductor nanoarchitecture LEDs using metal core inside microtube LEDs. In this work, we report the fabrications and characteristics of metal-cored coaxial $GaN/In_xGa_{1-x}N$ microtube LEDs. For the fabrication of metal-cored microtube LEDs, $GaN/In_xGa_{1-x}N/ZnO$ coaxial microtube LED arrays grown on an n-GaN/c-Al2O3 substrate were lifted-off from the substrate by wet chemical etching of sacrificial ZnO microtubes and $SiO_2$ layer. The chemically lifted-off layer of LEDs were then stamped upside down on another supporting substrates. Subsequently, Ti/Au and indium tin oxide were deposited on the inner shells of microtubes, forming n-type electrodes of the metal-cored LEDs. The device characteristics were investigated measuring electroluminescence and current-voltage characteristic curves and analyzed by computational modeling of current spreading characteristics.

  • PDF

Radiological and Geochemical Assessment of Different Rock Types from Ogun State in Southwestern Nigeria

  • Olabamiji Aliu Olayinka;Alausa Shamsideen Kunle
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.5
    • /
    • pp.251-261
    • /
    • 2023
  • Background: This paper deals with the study of natural radioactivity in rocks from Ogun State in Southwestern Nigeria. The aim is to determine radiation emissions from rocks in order to estimate radiation hazard indices. Objectives: The following objectives were targeted: 1. To determine radiation emissions from each type of rocks; 2. To estimate radiation hazard indices based on the rocks; 3. To correlate the activity concentrations of radionuclides with major oxides. Methods: The samples were analyzed using a NaI (Tl) gamma ray spectrometric detector and PerkinElmer AAnalyst 400 AAS spectrometer. Results: The activity of 40K, 226Ra, and 232Th were found in order of decreasing magnitude from pegmatite>granite>migmatite. In contrast, lower concentrations were found in shale, phosphate, clay stone, sandstone and limestone. The mean absorbed doses were 125±23 nGyh-1 (migmatite), 74±13 nGy/h (granite), 72±13 nGyh-1 (pegmatite), 64±09 nGyh-1 (quartzite), 45±16 nGyh-1 (shale), 41±09 nGyh-1 (limestone), 41±11 nGyh-1 (clay stone), 24±03 nGyh-1 (phosphate), and 21±10 nGyh-1 (sandstone). The outdoor effective dose rates in all rock samples were slightly higher than the world average dose value of 0.34 mSvy-1. The percentage composition of SiO2 in the rock samples was above 50 wt% except for in the limestone, shale and phosphate. Al2O3 ranged from 4.10~21.24 wt%, Fe2O3 from 0.39~7.5 wt%, and CaO from 0.09-46.6 wt%. In addition, Na2O and K2O were present in at least 5 wt%. Other major oxides, including TiO2, P2O5, K2O, MnO, MgO and Na2O were depleted. Conclusions: The findings suggest that Ogun State may be described as a region with elevated background radiation. It is recommended that houses should be constructed with good cross ventilation and residences should use home radiation monitoring instruments to monitor radon emanating from walls.

High Performance Flexible Inorganic Electronic Systems

  • Park, Gwi-Il;Lee, Geon-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.115-116
    • /
    • 2012
  • The demand for flexible electronic systems such as wearable computers, E-paper, and flexible displays has increased due to their advantages of excellent portability, conformal contact with curved surfaces, light weight, and human friendly interfaces over present rigid electronic systems. This seminar introduces three recent progresses that can extend the application of high performance flexible inorganic electronics. The first part of this seminar will introduce a RRAM with a one transistor-one memristor (1T-1M) arrays on flexible substrates. Flexible memory is an essential part of electronics for data processing, storage, and radio frequency (RF) communication and thus a key element to realize such flexible electronic systems. Although several emerging memory technologies, including resistive switching memory, have been proposed, the cell-to-cell interference issue has to be overcome for flexible and high performance nonvolatile memory applications. The cell-to-cell interference between neighbouring memory cells occurs due to leakage current paths through adjacent low resistance state cells and induces not only unnecessary power consumption but also a misreading problem, a fatal obstacle in memory operation. To fabricate a fully functional flexible memory and prevent these unwanted effects, we integrated high performance flexible single crystal silicon transistors with an amorphous titanium oxide (a-TiO2) based memristor to control the logic state of memory. The $8{\times}8$ NOR type 1T-1M RRAM demonstrated the first random access memory operation on flexible substrates by controlling each memory unit cell independently. The second part of the seminar will discuss the flexible GaN LED on LCP substrates for implantable biosensor. Inorganic III-V light emitting diodes (LEDs) have superior characteristics, such as long-term stability, high efficiency, and strong brightness compared to conventional incandescent lamps and OLED. However, due to the brittle property of bulk inorganic semiconductor materials, III-V LED limits its applications in the field of high performance flexible electronics. This seminar introduces the first flexible and implantable GaN LED on plastic substrates that is transferred from bulk GaN on Si substrates. The superb properties of the flexible GaN thin film in terms of its wide band gap and high efficiency enable the dramatic extension of not only consumer electronic applications but also the biosensing scale. The flexible white LEDs are demonstrated for the feasibility of using a white light source for future flexible BLU devices. Finally a water-resist and a biocompatible PTFE-coated flexible LED biosensor can detect PSA at a detection limit of 1 ng/mL. These results show that the nitride-based flexible LED can be used as the future flexible display technology and a type of implantable LED biosensor for a therapy tool. The final part of this seminar will introduce a highly efficient and printable BaTiO3 thin film nanogenerator on plastic substrates. Energy harvesting technologies converting external biomechanical energy sources (such as heart beat, blood flow, muscle stretching and animal movements) into electrical energy is recently a highly demanding issue in the materials science community. Herein, we describe procedure suitable for generating and printing a lead-free microstructured BaTiO3 thin film nanogenerator on plastic substrates to overcome limitations appeared in conventional flexible ferroelectric devices. Flexible BaTiO3 thin film nanogenerator was fabricated and the piezoelectric properties and mechanically stability of ferroelectric devices were characterized. From the results, we demonstrate the highly efficient and stable performance of BaTiO3 thin film nanogenerator.

  • PDF