• Title/Summary/Keyword: n type Si

Search Result 866, Processing Time 0.033 seconds

Thin Film Transistor with Transparent ZnO as active channel layer (투명 ZnO를 활성 채널층으로 하는 박막 트랜지스터)

  • Shin Paik-Kyun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.1
    • /
    • pp.26-29
    • /
    • 2006
  • Transparent ZnO thin films were prepared by KrF pulsed laser deposition (PLD) technique and applied to a bottom-gate type thin film transistor device as an active channel layer. A high conductive crystalline Si substrate was used as an metal-like bottom gate and SiN insulating layer was then deposited by LPCVD(low pressure chemical vapour deposition). An aluminum layer was then vacuum evaporated and patterned to form a source/drain metal contact. Oxygen partial pressure and substrate temperature were varied during the ZnO PLD deposition process and their influence on the thin film properties were investigated by X-ray diffraction(XRD) and Hall-van der Pauw method. Optical transparency of the ZnO thin film was analyzed by UV-visible phometer. The resulting ZnO-TFT devices showed an on-off ration of $10^6$ and field effect mobility of 2.4-6.1 $cm^2/V{\cdot}s$.

Control of electrical types in the P-doped ZnO thin film by Ar/$O_2$ gas flow ratio

  • Kim, Young-Yi;Han, Won-Suk;Kong, Bo-Hyun;Cho, Hyung-Koun;Kim, Jun-Ho;Lee, Ho-Seoung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.11-11
    • /
    • 2008
  • ZnO has a very large exciton binding energy (60 meV) as well as thermal and chemical stability, which are expected to allow efficient excitonic emission, even at room temperature. ZnO based electronic devices have attracted increasing interest as the backplanes for applications in the next-generation displays, such as active-matrix liquid crystal displays (AMLCDs) and active-matrix organic light emitting diodes (AMOLEDs), and in solid state lighting systems as a substitution for GaN based light emitting diodes (LEDs). Most of these electronic devices employ the electrical behavior of n-type semiconducting active oxides due to the difficulty in obtaining a p-type film with long-term stability and high performance. p-type ZnO films can be produced by substituting group V elements (N, P, and As) for the O sites or group I elements (Li, Na, and K) for Zn sites. However, the achievement of p-type ZnO is a difficult task due to self-compensation induced from intrinsic donor defects, such as O vacancies (Vo) and Zn interstitials ($Zn_i$), or an unintentional extrinsic donor such as H. Phosphorus (P) doped ZnO thin films were grown on c-sapphire substrates by radio frequency magnetron sputtering with various Ar/ $O_2$ gas ratios. Control of the electrical types in the P-doped ZnO films was achieved by varying the gas ratio with out post-annealing. The P-doped ZnO films grown at a Ar/ $O_2$ ratio of 3/1 showed p-type conductivity with a hole concentration and hole mobility of $10^{-17}cm^{-3}$ and $2.5cm^2/V{\cdot}s$, respectively. X-ray diffraction showed that the ZnO (0002) peak shifted to lower angle due to the positioning of $p^{3-}$ ions with a smaller ionic radius in the $O^{2-}$ sites. This indicates that a p-type mechanism was due to the substitutional Po. The low-temperature photoluminescence of the p-type ZnO films showed p-type related neutral acceptor-bound exciton emission. The p-ZnO/n-Si heterojunction LEO showed typical rectification behavior, which confirmed the p-type characteristics of the ZnO films in the as-deposited status, despite the deep-level related electroluminescence emission.

  • PDF

A study on p-type ZnO thin film characterization and the stability from oxygen fraction variation ($O_2$ fraction 변화에 따른 undoped p-type ZnO 특성 및 안정화에 대한 연구)

  • Park, Hyeong-Sik;Jang, Kyung-Soo;Jung, Sung-Wook;Jeong, Han-Uk;Yun, Eui-Jung;Yi, J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.143-143
    • /
    • 2010
  • In this study, we demonstrate that ZnO deposited onto $SiO_2$ substrates by magnetron sputtering produces p-type ZnO at higher $O_2$ pressure and n-type ZnO at lower $O_2$ pressure. We also report the effect of hydrogen peroxide ($H_2O_2$) on the stability of undoped ZnO thin films. The films were immersed in 30% $H_2O_2$ for 1 min at $30^{\circ}C$ and annealed in $O_2$at $450^{\circ}C$. The carrier concentration, mobility. and conductivity were measured by a Hall effect measurement system. The Hall measurement results for ZnO films untreated with $H_2O_2$ but annealed in $O_2$ indicate that oxygen fraction greater than ~0.5 produces undoped p-type ZnO films, whereas oxygen fraction less than ~0.5 produces undoped n-type ZnO films. This is attributed to the fact that the oxygen vacancies ($V_o$) decrease and the oxygen interstitials ($O_i$) or zinc vacancies ($V_{Zn}$) increase with increasing oxygen atoms incorporated into ZnO films during deposition and $O_2$ post-annealing.

  • PDF

Synthesis and Mechanical, Dyeable Properties of Polyurethane with the Chain Extender Containing Tertiary Amine (3차 아민계 쇄연장제를 이용한 폴리우레탄 수지의 합성과 기계적, 염색 특성)

  • Noh, Si-Tae;Kim, Pyung-Jun;Jung, Chang-Nam
    • Applied Chemistry for Engineering
    • /
    • v.7 no.2
    • /
    • pp.341-349
    • /
    • 1996
  • To improve the dyeability of polyurethane (PU) resin, low molecular weight diols containing dye site in the molecular structure was added as a chain-extender. PU resin were synthesized with the variations in the chain extender, polyol type, and hard segment/soft segment (HS/SS) ratio. When HS/SS ratio is 1.4 and dimethylolpropionic acid(DMPA) or N-butyldiethanolamine (BDEA) was used as a chain extender, because of heterogeneity of reaction mechanical properties were diminished. But when N-methyldiethanolamine (MDEA) was used as a DCE, and HS/SS ratio lowed to 1.3, mechanical properties and dyeability improved. In particular, when linear type 1,4-BD was formulated with MDEA, hydrolysis resistance and mechanical properties of PTMG type PU was improved. And initial elasticity, tensile strength and elongation could be controlled by the variation of HS/SS ratio, DCE mixing ratio of 1,6-HD or NPG.

  • PDF

Dislocations as native nanostructures - electronic properties

  • Reiche, Manfred;Kittler, Martin;Uebensee, Hartmut;Pippel, Eckhard;Hopfe, Sigrid
    • Advances in nano research
    • /
    • v.2 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • Dislocations are basic crystal defects and represent one-dimensional native nanostructures embedded in a perfect crystalline matrix. Their structure is predefined by crystal symmetry. Two-dimensional, self-organized arrays of such nanostructures are realized reproducibly using specific preparation conditions (semiconductor wafer direct bonding). This technique allows separating dislocations up to a few hundred nanometers which enables electrical measurements of only a few, or, in the ideal case, of an individual dislocation. Electrical properties of dislocations in silicon were measured using MOSFETs as test structures. It is shown that an increase of the drain current results for nMOSFETs which is caused by a high concentration of electrons on dislocations in p-type material. The number of electrons on a dislocation is estimated from device simulations. This leads to the conclusion that metallic-like conduction exists along dislocations in this material caused by a one-dimensional carrier confinement. On the other hand, measurements of pMOSFETs prepared in n-type silicon proved the dominant transport of holes along dislocations. The experimentally measured increase of the drain current, however, is here not only caused by an higher hole concentration on these defects but also by an increasing hole mobility along dislocations. All the data proved for the first time the ambipolar behavior of dislocations in silicon. Dislocations in p-type Si form efficient one-dimensional channels for electrons, while dislocations in n-type material cause one-dimensional channels for holes.

A Review on TOPCon Solar Cell Technology

  • Yousuf, Hasnain;Khokhar, Muhammad Quddamah;Chowdhury, Sanchari;Pham, Duy Phong;Kim, Youngkuk;Ju, Minkyu;Cho, Younghyun;Cho, Eun-Chel;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.9 no.3
    • /
    • pp.75-83
    • /
    • 2021
  • The tunnel oxide passivated contact (TOPCon) structure got more consideration for development of high performance solar cells by the introduction of a tunnel oxide layer between the substrate and poly-Si is best for attaining interface passivation. The quality of passivation of the tunnel oxide layer clearly depends on the bond of SiO in the tunnel oxide layer, which is affected by the subsequent annealing and the tunnel oxide layer was formed in the suboxide region (SiO, Si2O, Si2O3) at the interface with the substrate. In the suboxide region, an oxygen-rich bond is formed as a result of subsequent annealing that also improves the quality of passivation. To control the surface morphology, annealing profile, and acceleration rate, an oxide tunnel junction structure with a passivation characteristic of 700 mV or more (Voc) on a p-type wafer could achieved. The quality of passivation of samples subjected to RTP annealing at temperatures above 900℃ declined rapidly. To improve the quality of passivation of the tunnel oxide layer, the physical properties and thermal stability of the thin layer must be considered. TOPCon silicon solar cell has a boron diffused front emitter, a tunnel-SiOx/n+-poly-Si/SiNx:H structure at the rear side, and screen-printed electrodes on both sides. The saturation currents Jo of this structure on polished surface is 1.3 fA/cm2 and for textured silicon surfaces is 3.7 fA/cm2 before printing the silver contacts. After printing the Ag contacts, the Jo of this structure increases to 50.7 fA/cm2 on textured silicon surfaces, which is still manageably less for metal contacts. This structure was applied to TOPCon solar cells, resulting in a median efficiency of 23.91%, and a highest efficiency of 24.58%, independently. The conversion efficiency of interdigitated back-contact solar cells has reached up to 26% by enhancing the optoelectrical properties for both-sides-contacted of the cells.

Evaluation of Micro End-Milling Characteristics of AlN-hBN Composites Sintered by Hot-Pressing (열간가압소결에 의해 제조된 AlN-hBN 복합재료의 마이크로 엔드밀링 가공특성 평가)

  • Baek, Si-Young;Cho, Myeong-Woo;Seo, Tae-Il
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.6
    • /
    • pp.390-401
    • /
    • 2008
  • The objective of this study is to evaluate various machining characteristics of AlN-hBN machinable ceramics in micro end-milling process for its further application. First, AlN based machinable ceramics with hBN contents in the range of 10 to 20vol% were prepared by hot-pressing. Material properties of the composites, such as relative density, Vickers hardness, flexural strength, Young's modulus and fracture toughness were measured and compared. Then, micro end-milling experiments were performed to fabricate micro channels using prepared system. During the process, cutting forces, vibrations and AE signals were measured and analyzed using applied sensor system. Machined micro channel shapes and surface roughness were measured using 3D non-contact type surface profiler. From the experimental results, it can be observed that the cutting forces, vibrations and AE signal amplitudes decreased with increasing hBN contents. Also, measured surface roughness and profiles were improved with increasing hBN contents. As a result of this study, optimum machining conditions can be determined to fabricate desired products with AlN-hBN machinable ceramics based on the experimental results of this research.

A Schottky Type Ultraviolet Photo-detector using RUO$_2$/GaN Contact (RUO$_2$/GaN 쇼트키 다이오드 형 자외선 수광소자)

  • Sin, Sang-Hun;Jeong, Byeong-Gwon;Bae, Seong-Beom;Lee, Yong-Hyeon;Lee, Jeong-Hui;Ham, Seong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.10
    • /
    • pp.671-677
    • /
    • 2001
  • A RuO$_2$ Schottky photo-detector was designed and fabricated with GaN layers on the sapphire substrate. For good absorption of UV light, an epitaxial structure with undoped GaN(0.5 ${\mu}{\textrm}{m}$)/n ̄-GaN(0.1${\mu}{\textrm}{m}$)/n+-GaN(1.5${\mu}{\textrm}{m}$) was grown by MOCVD. The structure had the carrier concentrations of 3.8$\times$10$^{18}$ cm ̄$^3$, the mobility of 283$\textrm{cm}^2$/V.s. After ECR etching process for mesa structure with the diameter of about 500${\mu}{\textrm}{m}$, Al ohmic contact was formed on GaN layer. After proper passivation between the contacts with Si$_3$/N$_4$, was formed on undoped GaN layer. The fabricated Schottky diode had a specific contact resistance of 1.15$\times$10$^{-5}$$\Omega$.$\textrm{cm}^2$]. It has a low leakage current of 305 pA at -5 V, which was attributed by stable characteristics of RuO$_2$ Schottky contact. In optical measurement, it showed the high UV to visible extinction ratio of 10$^{5}$ and very high responsivity of 0.23 A/W at the wavelength of 365nm.

  • PDF

Alanysis of the Optical Properties of p-type ZnO Thin Films Doped by P based on Ampouele-tube Method (Ampoule-tube 법으로 Phosphorus를 도핑한 P형 ZnO 박막의 광학적 특성 분석)

  • Yoo, In-Sung;Oh, Sang-Hyun;So, Soon-Jin;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.145-146
    • /
    • 2006
  • The most Important research topic in the development of ZnO LED and LD is the production of p-type ZnO thin film that has minimal stress with outstanding stoichiometric ratio. In this study, Phosphorus diffused into the undoped ZnO thin films using the ampoule-tube method for the production of p-type znO thin films. The undoped ZnO thin films were deposited by RF magnetron sputtering system on $GaAs_{0.6}P_{0.4}$/GaP and Si wafers. 4N Phosphorus (P) was diffused into the undoped ZnO thin films in ampoule-tube which was performed and $630^{\circ}C$ during 3hr. We found the diffusion condition of the conductive ZnO films which had p-type properties with the highest mobility of above 532 $cm^2$/Vs compared with other studies PL spectra measured at 10K for the purpose of analyzing optical properties of p-type ZnO thin film showed strong PL intensity in the UV emission band around 365nm ~ 415nm and 365nm ~ 385nm.

  • PDF

Realization and Analysis of p-Type ZnO:Al Thin Film by RF Magnetron Sputtering

  • Jin, Hu-Jie;Jeong, Yun-Hwan;Park, Choon-Bae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.2
    • /
    • pp.67-72
    • /
    • 2008
  • Al-doped p-type ZnO thin films were fabricated by RF magnetron sputtering on n-Si (100) and homo-buffer layers in pure oxygen ambient. ZnO ceramic mixed with 2 wt% $Al_2O_3$ was selected as a sputtering target. XRD spectra show that the Al-doped ZnO thin films have ZnO crystal structure. Hall Effect experiments with Van der Pauw configuration show that p-type carrier concentrations are arranged from $1.66{\times}10^{16}$ to $4.04{\times}10^{18}\;cm^{-2}$, mobilities from 0.194 to $198\;cm^2V{-1}s^{-1}$ and resistivities from 0.0963 to $18.4\;{\Omega}cm$. FESEM cross section images of different parts of a p-type ZnO:Al thin film annealed at $800^{\circ}C$ show a compact structure. Measurement for same sample shows that density is $5.40\;cm^{-3}$ which is smaller than theoretically calculated value of $5.67\;cm^{-3}$. Photoluminescence (PL) spectra at 10 K show a shoulder peak of p-type ZnO film at about 3.117 eV which is ascribed to electron transition from donor level to acceptor level (DAP).