• Title/Summary/Keyword: n type Si

Search Result 866, Processing Time 0.04 seconds

Ferromagnetism and Anomalous Hall Effect in p-Zn0.99Mn0.01O:P

  • Kim, Hyun-Jung;Sim, Jae-Ho;Kim, Hyo-Jin;Hong, Soon-Ku;Kim, Do-Jin;Ihm, Young-Eon;Choo, Woong-Kil
    • Journal of Magnetics
    • /
    • v.10 no.3
    • /
    • pp.95-98
    • /
    • 2005
  • We report hole-induced ferromagnetism in diluted magnetic semiconductor $Zn_{0.99}Mn_{0.01}$ films grown on $SiO_2/Si$ substrates by reactive sputtering. The p-type conduction with hole concentration over $10^{18}\;cm^{-3}$ is achieved by P doping followed by rapid thermal annealing at $800^{\circ}C$ in a $N_2$ atmosphere. The p-type $Zn_{0.99}Mn_{0.01}O:P$ is carefully examined by x-ray diffraction and transmission electron microscopy. The magnetic measurements for $p-Zn_{0.99}Mn_{0.01}O:P$ clearly reveal ferromagnetic characteristics with a Curie temperature above room temperature, whereas those for $n-Zn_{0.99}Mn_{0.01}O:P$ show paramagnetic behavior. The anomalous Hall effect at room temperature is observed for the p-type film. This result strongly supports hole-induced room temperature ferromagnetism in $p-Zn_{0.99}Mn_{0.01}O:P$.

Boron Doping Method Using Fiber Laser Annealing of Uniformly Deposited Amorphous Silicon Layer for IBC Solar Cells (IBC형 태양전지를 위한 균일하게 증착된 비정질 실리콘 층의 광섬유 레이저를 이용한 붕소 도핑 방법)

  • Kim, Sung-Chul;Yoon, Ki-Chan;Kyung, Do-Hyun;Lee, Young-Seok;Kwon, Tae-Young;Jung, Woo-Won;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.456-456
    • /
    • 2009
  • Boron doping on an n-type Si wafer is requisite process for IBC (Interdigitated Back Contact) solar cells. Fiber laser annealing is one of boron doping methods. For the boron doping, uniformly coated or deposited film is highly required. Plasma enhanced chemical vapor deposition (PECVD) method provides a uniform dopant film or layer which can facilitate doping. Because amorphous silicon layer absorption range for the wavelength of fiber laser does not match well for the direct annealing. In this study, to enhance thermal affection on the existing p-a-Si:H layer, a ${\mu}c$-Si:H intrinsic layer was deposited on the p-a-Si:H layer additionally by PECVD. To improve heat transfer rate to the amorphous silicon layer, and as heating both sides and protecting boron eliminating from the amorphous silicon layer. For p-a-Si:H layer with the ratio of $SiH_4$ : $B_2H_6$ : $H_2$ = 30 : 30 : 120, at $200^{\circ}C$, 50 W, 0.2 Torr for 30 minutes, and for ${\mu}c$-Si:H intrinsic layer, $SiH_4$ : $H_2$ = 10 : 300, at $200^{\circ}C$, 30 W, 0.5 Torr for 60 minutes, 2 cm $\times$ 2 cm size wafers were used. In consequence of comparing the results of lifetime measurement and sheet resistance relation, the laser condition set of 20 ~ 27 % of power, 150 ~ 160 kHz, 20 ~ 50 mm/s of marking speed, and $10\;{\sim}\;50 {\mu}m$ spacing with continuous wave mode of scanner lens showed the correlation between lifetime and sheet resistance as $100\;{\Omega}/sq$ and $11.8\;{\mu}s$ vs. $17\;{\Omega}/sq$ and $8.2\;{\mu}s$. Comparing to the singly deposited p-a-Si:H layer case, the additional ${\mu}c$-Si:H layer for doping resulted in no trade-offs, but showed slight improvement of both lifetime and sheet resistance, however sheet resistance might be confined by the additional intrinsic layer. This might come from the ineffective crystallization of amorphous silicon layer. For the additional layer case, lifetime and sheet resistance were measured as $84.8\;{\Omega}/sq$ and $11.09\;{\mu}s$ vs. $79.8\;{\Omega}/sq$ and $11.93\;{\mu}s$. The co-existence of $n^+$layeronthesamesurfaceandeliminating the laser damage should be taken into account for an IBC solar cell structure. Heavily doped uniform boron layer by fiber laser brings not only basic and essential conditions for the beginning step of IBC solar cell fabrication processes, but also the controllable doping concentration and depth that can be established according to the deposition conditions of layers.

  • PDF

Investigation of Various Radiation Proton Energy Effect on n, p Type Silicon by Positron Annihilation Method (양전자 소멸 측정법으로 양성자 조사에너지 변화에 대한 n, p형 실리콘 구조 특성)

  • Lee, Chong Yong
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.6
    • /
    • pp.341-347
    • /
    • 2013
  • The n-type and p-type silicon samples were exposed by 40.0, 3.98 MeV proton beams ranging between 0 to $20.0{\times}10^{13}protons/cm^2$. Coincidence Doppler Broadening Positron Annihilation Spectroscopy (CDBPAS) were applied to study of defect characteristics of p type and n type silicon samples. In this investigation the numerical analysis of the spectra was employed to the determination of the shape parameter, S, defined as the ratio between the amount of counts in a central portion of the gamma spectrum and the total counts of whole gamma spectrum. The S-parameter values strongly depend on the irradiated proton beam that indicated the defects generate more, rather than the energy intensity. 40 MeV irradiated proton beam in the n-type silicon at $20.0{\times}10^{13}protons/cm^2$ was larger defects than 3.98 MeV irradiated proton beam. It was analysis between the proton irradiation beams and the proton intensities of the irradiation. Because of the Bragg peak, SRIM results shows mainly in a certain depth of the sample to form the defect by the proton irradiation, rather than the defects to appear for the entire sample.

Application Effects of Some Nitrogen Fertilizers Forms for the Growth and Yield of Rice Plant (몇가지 형태(形態)의 질소비료시비(窒素肥料施肥)가 수도(水稻)의 생육(生育) 및 수량(收量)에 미치는 영향(影響))

  • Park, Chang Keu;Yuk, Chang Su;Cho, Gwang Dong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.1
    • /
    • pp.78-88
    • /
    • 1985
  • Nitrogen fertilizer effectiveness on rice production was studied to evaluate the different forms and sources. Seven kind of nitrogen fertilizers were applied in two levels, 15 and 30 kg per 10a on Jinjubyeo (Japonica type) in silt loam paddy soil of pot cultivation. The results were summerized as follows; 1. pH in soils was decreased with enhancement of ammonium sulfate application in $NH_4-N$, but it was increased with times after nitric-acid application and PH change in soil was not remarkable when $NO_3-N$ with accessory component was applied. 2. $NH_4-N$ contents in soil were the lowest at 2 weeks after application in N 15kg/10a regardless of different sources of nitrogen fertilizer. $NO_3-N$, in N 30kg/10a, was decreased continuously until 4 weeks, while $NH_4-N$, Urea-N were at minimum during 2-3 weeks. 3. Growth of culm length and straw weight applied with AN (Ammonium Nitrate), AS (Ammonium Sulfate) and urea were superior to the form of nitrate. While NA (Nitric Acid), PN (Potassium Nitrate) and CN (Calcium Nitrate) plot of the $NO_3-N$ was the dominant fertilizers for root elongation. 4. Brown rice yields were increased dominantly by $NH_4-N$ application such as AS or AP than $NO_3-N$ pot. But the yields in case of $NO_3-N$ application CN, PN and NA were decreased. 5. N, P, Mg and Mn content of straw ranked the effectiveness of nitrogen forms as $NH_4-N$, Urea-N and $NH_4-N+NO_3-N$, while K, Ca and $SiO_2$ content of straw in $NO_3-N$ fertilizer plot were high while N, P, Mg, Mn, Fe and Mg were low. 6. Increament of nitrogen absorption in straw was stimulated by enhancement of phosphorous absorption and the growth and yield of rice plant were increased. Absorption of N, P, Ca and Mg was decreased by CN application. Absorption of N, P and Mg also was decreased by $NO_3-N$ application and N, P, Mg or Ca content were seemed to simulated the growth and yield of rice plant. 7. $SiO_2$, Zn and Fe contents of the root at harvest stage were higher than those of the straw. N, P, Mg, Mn, Zn and Fe contents were high in $NH_4-N$ and Urea treatment. While K, ca and $SiO_2$ contents, however, were high in $NO_3-N$ treatment.

  • PDF

Phase Transformation During Hot Consolidation and Heat Treatments in Mechanically Alloyed Iron Silicide (기계적 합금화 Iron Silicide의 열간성형 및 열처리에 의한 상변화)

  • Eo, Sun-Cheol;Kim, Il-Ho;Hwang, Seung-Jun;Jo, Gyeong-Won;Choe, Jae-Hwa
    • Korean Journal of Materials Research
    • /
    • v.11 no.12
    • /
    • pp.1068-1073
    • /
    • 2001
  • An n-type iron$silicide(Fe_{0.98}Co_{0.02}Si_2)$has been produced by mechanical alloying process and consolidated by vacuum hot pressing. Although as-milled powders after 120 hours of milling did not show an alloying progress,${\beta}-FeSi_2$phase transformation was induced by isothermal annealing at$830{\circ}C$for 1 hour, and the fully transformed${\beta}-FeSi_2$phase was obtained after 4 hours of annealing. Near fully dense specimen was obtained after vacuum hot pressing at$ 1100{\circ}C$with a stress of 60MPa. However, as-consolidated iron silicides were consisted of untransformed mixture of ${\Alpha}-Fe_2Si_5$and ${\varepsilon-FeSi$phases. Thus, isothermal annealing has been carried out to induce the transformation to a thermoelectric semiconducting${\beta}-FeSi_2$phase. The condition for${\beta}-FeSi_2$transformation was investigated by utilizing DTA, SEM, and XRD analysis. The phase transformation was shown to be taken place by a vacuum isothermal annealing at$830{\circ}C$and the transformation behaviour was investigated as a function of annealing time. The mechanical properties of${\beta}-FeSi_2$materials before and after isothermal annealing were characterized in this study.

  • PDF

이온주입 에너지에 따른 Auger Si KLL Peak Shift 및 Ti 계열 화합물의 Chemical State 관찰

  • Heo, Sung;Park, Yoon-Baek;Min, Gyung-Yeol;Lee, Sun-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.83-83
    • /
    • 1999
  • 본 연구에서는 Auger Elecrtron Spectroscopy (AES) 장비를 이용하여 Silicone Wafer 표면에 BF 이온을 주입시킨 후 Dopping 농도 및 Implantation 에너지에 따른 Si KLL Peak의 변화를 관찰하였다. 또한 PVD Ti 계열 화학물의 시료에 대하여 Peak의 Shape 변화를 관찰하였다. 1)Dopping 농도 및 Implantation 에너지에 따른 Si KLL Peak의 변화 관찰 일반적으로 Silicone 기판에 Arsenic(3가)을 Dopping 하였을 경우, Si KLL Peak의 Kinetic Energy 값은 순수 Si Peak보다 더 작은 값으로 Shift 하며, Boron (5가)을 Dopping하였을 경우에는 더 큰 값으로 Shift 한다. 이론적으로 N-type Si의 에너지 차이는 약 1.0eV로 보고되어 있으며, AES를 이용하여 실험적으로 측정된 값은 약 0.6eV정도로 알려져 있다. 이러한 차이는 Dopping 농도에 따라 Valance Band의 에너지 값이 변화하기 때문이라고 알려져 있다. 본 연구에서는 BF2를 Si에 이온 주입하여 입사 에너지 및 dose 량에 따른 Si KLL Peak의 변화를 관찰하였다. 그림1과 같이 Si KLL Peak는 Implantation Energy가 작을수록 Kinetic Energy가 높은 곳으로 Shift 한다. 이는 LOw Energy로 이온 주입하면, Projected Range (Rp)가 High Energy로 이온 주입할 때보다 작기 때문이며, 이 결과를 Secondary Ion Mass Spectroscopy (SIMS) 및 TRIM simulation을 이용하여 확인하였다. 또한 표면에서의 전자 Density의 변화와 Implantation energy와의 관계를 시료의 표면에서 반사되어 나오는 전자의 에너지 손실(Reflected Electron Energy Loss Spectroscopy:REELS)을 통하여 고찰하였다. 2) PVD Ti 계열화합물의 시료에 대한 peak의 shape 가 변화하며, TiL3M23V (Ti2) 및 TiL3M23M23 (Til) Peak의 Intensity Ratio가 변화한다. 따라서 본 연구에서는 그림 2와 같이 Ti 결합 화합물에서의 Ti Auger Peak의 특성 에너지 값과 Peak Shape를 관찰하여, AES를 이용하여 Ti 계열의 화합물에 대한 Chemical state 분석의 가능성을 평가하였다.

  • PDF

Fabrication of New Co-Silicided Si Field Emitter Array with Long Term Stability (Co-실리사이드를 이용한 새로운 고내구성 실리콘 전계방출소자의 제작)

  • Chang, Gee-Keun;Kim, Min-Young;Jeong, Jin-Cheol
    • Korean Journal of Materials Research
    • /
    • v.10 no.4
    • /
    • pp.301-304
    • /
    • 2000
  • A new triode type Co-silicided Si FEA(field emitter array) was realized by Co-silicidation of Co coated Si FEA and its field emission properties were investigated. The field emission properties of the fabricated device through the unit pixel with $45{\times}45$ tip array in the area of $250{\mu\textrm{m}}{\times}250{\mu\textrm{m}}$ under high vacuum condition of $10^{-8}Torr$ were as follows : the turn-on voltage was about 35V and the anode current was about $1.2\mu\textrm{A}(0.6㎁/tip)$ at the bias of $V_A=500V\;and\; V_G=55V$. The fabricated device showed the stable electrical characteristics without degradation of field emission current for the long term operation except for the initial transient state. The low turn-on voltage and the high current stability of the Co-silicided Si FEA were due to the thermal and chemical stability and the low work function of silicide layer formed at the surface of Si tip.

  • PDF

Study on Co- and Ni-base $Si_2$ for SiC ohmic contact

  • Kim, Chang-Kyo;Yang, Seong-Joon;Noh, Il-Ho;Jang, Seok-Won;Cho, Nam-In;Hwa, Jeong-Kyoung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.167-171
    • /
    • 2003
  • We report the material and electrical properties of $CoSi_2$ and $NiSi_2$contacts to n-type 4H-SiC depending on the post-annealing and the metal covering conditions. The Ni and Co silicides are deposited by RF sputtering with Ni/Si/Ni and Co/Si/Co films separately deposited on 4H-SiC substrates. The deposited films are annealed at $800\;^{\circ}C$ in $Ar:H_2$ (9:1) gas ambient. Results of the specific surface resistivity measurements show that the resistivity of the Co-based metal contact was the one order lower than that of the Ni-based contact. The specific contact resistance was measured by a transmission line technique, and the specific contact resistivity of $1.5{\times}10^{-6}\;{\Omega}\;cm^2$ is obtained for Co/Si/Co metal structures after a two-step annealing; at $550\;^{\circ}C$ for 10 min and $800\;^{\circ}C$ for 3min. The physical properties of the contacts were examined by using XRD and AES, and the results indicate that the Co-based metal contacts have better structural stability of silicide phases formed after the high temperature annealing.

  • PDF

Effect of Alloy Elements on Galvannealed Coating Quality in IF High Strength Steels (IF 고강도 합금화 용융아연도금강판의 표면품질에 미치는 합금원소의 영향)

  • Jeon, Sun-Ho;Chin, Kwang-Geun;Shin, Kwang-Soo;Sohn, Ho-Sang;Kim, Dai-Ryong
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.5
    • /
    • pp.289-295
    • /
    • 2008
  • The effect of the alloy elements(Si/Mn) ratio on the coating quality including wettabilty with molten zinc, galvannealing kinetics and crater has been investigated in interstitial-free high strength steel(IFHSS) containing Si and Mn. When the Si/Mn ratio was below 0.75, IF-HSS exhibited a good wettability leading to a good galvannealed coating quality after annealing at $800^{\circ}C$ for 40s in $15%H_2-N_2$ mixed gas with dew point $-60^{\circ}C$. In contrast, the wettability and galvannealed coating quality were deteriorated in the Si/ Mn ratio above 0.75. It is shown that they have relevance to oxides forms by selective oxidation on the steel surface. The oxide particles dispersed on the steel surface with a surface coverage of below 40% resulted in good wettability and galvannealed coating quality. The oxide particle is mainly consisted of $Mn_2SiO_4$ with low contact angle in molten zinc. On the other hand, the continuous oxide layer on the steel surface, such as network- and film-type,caused to poor wettability and galvannealed coating quality. The coverage of oxide layer was above 80%, and its chemical species was $SiO_2$ with high contact angle in molten zinc. Consequently, the Si/Mn alloy ratio played an importance role in galvannealed coating quality of IF-HSS.

Mitigation of Potential-Induced Degradation (PID) for PERC Solar Cells Using SiO2 Structure of ARC Layer (반사방지막(ARC)의 SiO2 구조에 따른 PERC 태양전지 PID 열화 완화 상관관계 연구)

  • Oh, Kyoung Suk;Park, Ji Won;Chan, Sung Il
    • Current Photovoltaic Research
    • /
    • v.8 no.4
    • /
    • pp.114-119
    • /
    • 2020
  • In this study, Mitigation of Potential-induced degradation (PID) for PERC solar cells using SiO2 Structure of ARC layer. The conventional PID test was conducted with a cell-level test based on the IEC-62804 test standard, but a copper PID test device was manufactured to increase the PID detection rate. The accelerated aging test was conducted by maintaining 96 hours with a potential difference of 1000 V at a temperature of 60℃. As a result, the PERC solar cell of SiO2-Free ARC structure decreased 22.11% compared to the initial efficiency, and the PERC solar cell of the Upper-SiO2 ARC structure decreased 30.78% of the initial efficiency and the PID reliability was not good. However, the PERC solar cell with the lower-SiO2 ARC structure reduced only 2.44%, effectively mitigating the degradation of PID. Na+ ions in the cover glass generate PID on the surface of the PERC solar cell. In order to prevent PID, the structure of SiNx and SiO2 thin films of the ARC layer is important. SiO2 thin film must be deposited on bottom of ARC layer and the surface of the PERC solar cell N-type emitter to prevent surface recombination and stacking fault defects of the PERC solar cell and mitigated PID degradation.