• Title/Summary/Keyword: n/i buffer layer

Search Result 46, Processing Time 0.023 seconds

The study on photoreflectance characteristics of the $Al_xGa_{1-x}As$ epilayer grown by MBE method (MBE 법으로 성장시킨 $Al_xGa_{1-x}As$ 에피층의 Photoreflectance 특성에 관한 연구)

  • 이정렬;김인수;손정식;김동렬;배인호;김대년
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.4
    • /
    • pp.341-347
    • /
    • 1998
  • We analyzed photoreflectance (PR) characterization of the $Al_xGa_{1-x}As$ epilayer grown by molecular beam epitaxy (MBE) method. The band-gap energy $(E_0)$ satisfying low power Franx-Keldysh (LPFK) due to GaAs buffer layer is 1.415 eV, interface electricall field $(E_i)$ is 1.05$\times$$10^4$V/cm, carrier concentration (N) is $1.3{\times}10^{15}\textrm{cm}^{-3}$. In PR spectrum intensity analysis at 300 K the $A^*$ peak below $(E_0)$ signal is low and distorted because of residual impurity in sample growth. The trap characteristic time ${\tau}_i$ of GaAs buffer layer is about 0.086 ms, and two superposed PR signal near 1.42eV consist of the third derivative signal of chemically eteched GaAs substrate and Franz-Keldysh oscillation (FKO) signal due to GaAs buffer layer.

  • PDF

Hybrid MBE Growth of Crack-Free GaN Layers on Si (110) Substrates

  • Park, Cheol-Hyeon;O, Jae-Eung;No, Yeong-Gyun;Lee, Sang-Tae;Kim, Mun-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.183-184
    • /
    • 2013
  • Two main MBE growth techniques have been used: plasma-assisted MBE (PA-MBE), which utilizes a rf plasma to supply active nitrogen, and ammonia MBE, in which nitrogen is supplied by pyrolysis of NH3 on the sample surface during growth. PA-MBE is typically performed under metal-rich growth conditions, which results in the formation of gallium droplets on the sample surface and a narrow range of conditions for optimal growth. In contrast, high-quality GaN films can be grown by ammonia MBE under an excess nitrogen flux, which in principle should result in improved device uniformity due to the elimination of droplets and wider range of stable growth conditions. A drawback of ammonia MBE, on the other hand, is a serious memory effect of NH3 condensed on the cryo-panels and the vicinity of heaters, which ruins the control of critical growth stages, i.e. the native oxide desorption and the surface reconstruction, and the accurate control of V/III ratio, especially in the initial stage of seed layer growth. In this paper, we demonstrate that the reliable and reproducible growth of GaN on Si (110) substrates is successfully achieved by combining two MBE growth technologies using rf plasma and ammonia and setting a proper growth protocol. Samples were grown in a MBE system equipped with both a nitrogen rf plasma source (SVT) and an ammonia source. The ammonia gas purity was >99.9999% and further purified by using a getter filter. The custom-made injector designed to focus the ammonia flux onto the substrate was used for the gas delivery, while aluminum and gallium were provided via conventional effusion cells. The growth sequence to minimize the residual ammonia and subsequent memory effects is the following: (1) Native oxides are desorbed at $750^{\circ}C$ (Fig. (a) for [$1^-10$] and [001] azimuth) (2) 40 nm thick AlN is first grown using nitrogen rf plasma source at $900^{\circ}C$ nder the optimized condition to maintain the layer by layer growth of AlN buffer layer and slightly Al-rich condition. (Fig. (b)) (3) After switching to ammonia source, GaN growth is initiated with different V/III ratio and temperature conditions. A streaky RHEED pattern with an appearance of a weak ($2{\times}2$) reconstruction characteristic of Ga-polarity is observed all along the growth of subsequent GaN layer under optimized conditions. (Fig. (c)) The structural properties as well as dislocation densities as a function of growth conditions have been investigated using symmetrical and asymmetrical x-ray rocking curves. The electrical characteristics as a function of buffer and GaN layer growth conditions as well as the growth sequence will be also discussed. Figure: (a) RHEED pattern after oxide desorption (b) after 40 nm thick AlN growth using nitrogen rf plasma source and (c) after 600 nm thick GaN growth using ammonia source for (upper) [110] and (lower) [001] azimuth.

  • PDF

Roles of i-SiC Buffer Layer in Amorphous p-SiC/i-SiC/i-Si/n-Si Thin Film Solar Cells (비정질 p-SiC/i-SiC/i-Si/n-Si 박막 태양전지에서 i-SiC 완충층의 역할)

  • Kim, Hyun-Chul;Shin, Hyuck-Jae;Lee, Jae-Shin
    • Korean Journal of Materials Research
    • /
    • v.9 no.12
    • /
    • pp.1155-1159
    • /
    • 1999
  • Thin film solar cells on a glass/$SnO_2$ substrate with p-SiC/i-Si/n-Si heterojunction structures were fabricated using a plasma-enhanced chemical-vapor deposition system. The photovoltaic properties of the solar cells were examined with varying the gas phase composition, x=$CH_4/\;(SiH_4+CH_4)$, during the deposition of the p-SiC layer. In the range of x=0~0.4, the efficiency of solar cell increased because of the increased band gap of the p-SiC window layer. Further increase in the gas phase composition, however, led to a decrease in the cell efficiency probably due to in the increased composition mismatch at the p-SiC/i-Si layers. As a result, the efficiency of a glass/$SnO_2$/p-SiC/i-SiC/i-Si/n-Si/Ag thin film solar cell with $1cm^2$ area was 8.6% ($V_{oc}$=0.85V, $J_{sc}$=16.42mA/$cm^2$, FF=0.615) under 100mW/$cm^2$ light intensity.

  • PDF

Highly Stabilized Protocrystalline Silicon Multilayer Solar Cells (고 안정화 프로터결정 실리콘 다층막 태양전지)

  • Lim Koeng Su;Kwak Joong Hwan;Kwon Seong Won;Myong Seung Yeop
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.102-108
    • /
    • 2005
  • We have developed highly stabilized (p-i-n)-type protocrystalline silicon (pc-Si:H) multilayer solar cells. To achieve a high conversion efficiency, we applied a double-layer p-type amorphous silicon-carbon alloy $(p-a-Si_{1-x}C_x:H)$ structure to the pc-Si:H multilayer solar cells. The less pronounced initial short wavelength quantum efficiency variation as a function of bias voltage proves that the double $(p-a-Si_{1-x}C_x:H)$ layer structure successfully reduces recombination at the p/i interface. It was found that a natural hydrogen treatment involving an etch of the defective undiluted p-a-SiC:H window layer before the hydrogen-diluted p-a-SiC:H buffer layer deposition and an improvement of the order in the window layer. Thus, we achieved a highly stabilized efficiency of $9.0\%$ without any back reflector.

  • PDF

Fabrication and Characterization of MFIS-FET using Au/SBT/LZO/Si structure

  • Im, Jong-Hyun;Lee, Gwang-Geun;Kang, Hang-Sik;Jeon, Ho-Seung;Park, Byung-Eun;Kim, Chul-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.174-174
    • /
    • 2008
  • Non-volatile memories using ferroelectric-gate field-effect transistors (Fe-FETs) with a metal/ferroelectric/semiconductor gate stack (MFS-FETs) make non-destructive read operation possible. In addition, they also have features such as high switching speed, non-volatility, radiation tolerance, and high density. However, the interface reaction between ferroelectric materials and Si substrates, i.e. generation of mobile ions and short retention, make it difficult to obtain a good ferroelectric/Si interface in an MFS-FET's gate. To overcome these difficulties, Fe-FETs with a metal/ferroelectric/insulator/semiconductor gate stack (MFIS-FETs) have been proposed, where insulator as a buffer layer is inserted between ferroelectric materials and Si substrates. We prepared $SrBi_2Ta_2O_9$ (SBT) film as a ferroelectric layer and $LaZrO_x$ (LZO) film as a buffer layer on p-type (100) silicon wafer for making the MFIS-FET devices. For definition of source and drain region, phosphosilicate glass (PSG) thin film was used as a doping source of phosphorus (P). Ultimately, the n-channel ferroelectric-gate FET using the SBT/LZO/Si Structure is fabricated. To examine the ferroelectric effect of the fabricated Fe-FETs, drain current ($I_d$) versus gate voltage ($V_g$) characteristics in logarithmic scale was measured. Also, drain current ($I_d$) versus drain voltage ($V_d$) characteristics of the fabricated SBT/LZO/Si MFIS-FETs was measured according to the gate voltage variation.

  • PDF

Characteristics of selective area growth of GaN/AlGaN double heterostructure grown by hydride vapor phase epitaxy on r-plane sapphire substrate (HVPE 방법에 의해 r-plane 사파이어 기판 위의 선택 성장된 GaN/AlGaN 이종 접합구조의 특성)

  • Hong, S.H.;Jeon, H.S.;Han, Y.H.;Kim, E.J.;Lee, A.R.;Kim, K.H.;Hwang, S.L.;Ha, H.;Ahn, H.S.;Yang, M.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.1
    • /
    • pp.6-10
    • /
    • 2009
  • In this paper, a selective area growth (SAG) of a GaN/AlGaN double heterostructure (DH) has been performed on r-plane sapphire substrate by using the mixed-source hydride vapor phase epitaxy (HVPE) with multi-sliding boat system. The SAG-GaN/AlGaN DH consists of GaN buffer layer, Te-doped AlGaN n-cladding layer, GaN active layer, Mg-doped AlGaN p-cladding layer, and Mg-doped GaN p-capping layer. The electroluminescence (EL) characteristics show an emission peak of wavelength, 439 nm with a full width at half maximum (FWHM) of approximately 0.64 eV at 20 mA. The I-V measurements show that the turn-on voltage of the SAG-GaN/AlGaN DH is 3.4 V at room temperature. We found that the mixed-source HVPE method with a multi-sliding boat system was one of promising growth methods for III-Nitride LEDs.

Characterization of step-edge dc SQUID magnetometer fabricated on sapphire substrate (사파이어 기판 위에 제작된 step-edge dc SQUID magnetometer의 특성)

  • 임해용;박종혁;정구락;한택상;김인선;박용기
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.127-130
    • /
    • 2002
  • Step-edge dc SQUID magnetometers have been fabricated on sapphire substrate. Ce$O_{2}$ buffer layer and $YBa_{2}$$Cu_{3}$ $O_{7}$(YBCO) films were deposited in-situ on the low angle (~$35^{\circ}$)steps formed on the substrates. Typical 5-$\mu$m-wide junction has $R_{N}$ of 4 $\Omega$ and $I_{c}$ of 60 $\mu$A with $I_{c}$$R_{N}$ product of 240 $\mu$V at 77 K. According to applied bias current, depth of voltage modulation was changed and maximum voltage was measured 100~300 fT/$\checkmark$ Hz at 100 Hz, and about 1.5 pT/$\checkmark$ Hz at 1 Hz. For ac bias reversal method, field noise was decreased in the 1/f region. The QRS peak of magneto-cardiogram was measured 50 pT in the magnetically shielded room.

  • PDF

Formation of a thin nitrided GaAs layer

  • Park, Y.J.;Kim, S.I.;Kim, E.K.;Han, I.K.;Min, S.K.;O'Keeffe, P.;Mutoh, H.;Hirose, S.;Hara, K.;Munekata, H.;Kukimoto, H.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1996.06a
    • /
    • pp.40-41
    • /
    • 1996
  • Nitridation technique has been receiving much attention for the formation of a thin nitrided buffer layer on which high quality nitride films can be formedl. Particularly, gallium nitride (GaN) has been considered as a promising material for blue-and ultraviolet-emitting devices. It can also be used for in situ formed and stable passivation layers for selective growth of $GaAs_2$. In this work, formation of a thin nitrided layer is investigated. Nitrogen electron cyclotron resonance(ECR)-plasma is employed for the formation of thin nitrided layer. The plasma source used in this work is a compact ECR plasma gun3 which is specifically designed to enhance control, and to provide in-situ monitoring of plasma parameters during plasma-assisted processing. Microwave power of 100-200 W was used to excite the plasma which was emitted from an orifice of 25 rnm in diameter. The substrate were positioned 15 em away from the orifice of plasma source. Prior to nitridation is performed, the surface of n-type (001)GaAs was exposed to hydrogen plasma for 20 min at $300{\;}^{\circ}C$ in order to eliminate a native oxide formed on GaAs surface. Change from ring to streak in RHEED pattern can be obtained through the irradiation of hydrogen plasma, indicating a clean surface. Nitridation was carried out for 5-40 min at $RT-600{\;}^{\circ}C$ in a ECR plasma-assisted molecular beam epitaxy system. Typical chamber pressure was $7.5{\times}lO^{-4}$ Torr during the nitridations at $N_2$ flow rate of 10 seem.(omitted)mitted)

  • PDF

Electrical Characteristics of Novel LIGBT with p Channel Gate and p+ Ring at Reverse Channel Structure (p+링과 p 채널 게이트를 갖는 역채널 LIGBT의 전기적인 특성)

  • Gang, Lee-Gu;Seong, Man-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.3
    • /
    • pp.99-104
    • /
    • 2002
  • lateral insulated gate bipolar transistors(LIGBTs) are extensively used in high voltage power IC application due to their low forward voltage drops. One of the main disadvantages of the LIGBT is its scow switching speed when compared to the LDMOSFET. And the LIGBT with reverse channel structure is lower current capability than the conventional LIGBT at the forward conduction mode. In this paper, the LIGBT which included p+ ring and p-channel gate is presented at the reverie channel structure. The presented LIGBT structure is proposed to suppress the latch up, efficiently and to improve the turn off time. It is shown to improve the current capability too. It is verified 2-D simulator, MEDICI. It is shown that the latch up current of new LIGBT is 10 times than that of the conventional LIGBT Additionally, it is shown that the turn off characteristics of the proposed LIGBT is i times than that of the conventional LIGBT. It is net presented the tail current of turn off characteristics at the proposed structure. And the presented LIGBT is not n+ buffer layer because it includes p channel gate and p+ ring.

Structural and electrical characterizations of $HfO_{2}/HfSi_{x}O_{y}$ as alternative gate dielectrics in MOS devices (MOS 소자의 대체 게이트 산화막으로써 $HfO_{2}/HfSi_{x}O_{y}$ 의 구조 및 전기적 특성 분석)

  • 강혁수;노용한
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.45-49
    • /
    • 2001
  • We have investigated physical and electrical properties of the Hf $O_2$/HfS $i_{x}$/ $O_{y}$ thin film for alternative gate dielectrics in the metal-oxide-semiconductor device. The oxidation of Hf deposited directly on the Si substrate results in the H $f_{x}$/ $O_{y}$ interfacial layer and the high-k Hf $O_2$film simultaneously. Interestingly, the post-oxidation N2 annealing of the H102/H1Si70y thin films reduces(increases) the thickness of an amorphous HfS $i_{x}$/ $O_{y}$ layer(Hf $O_2$ layer). This phenomenon causes the increase of the effective dielectric constant, while maintaining the excellent interfacial properties. The hysteresis window in C-V curves and the midgap interface state density( $D_{itm}$) of Hf $O_2$/HfS $i_{x}$/ $O_{y}$ thin films less than 10 mV and ~3$\times$10$^{11}$ c $m^{-2}$ -eV without post-metallization annealing, respectively. The leakage current was also low (1$\times$10-s A/c $m^2$ at $V_{g}$ = +2 V). It is believed that these excellent results were obtained due to existence of the amorphous HfS $i_{x}$/ $O_{y}$ buffer layer. We also investigated the charge trapping characteristics using Fowler-Nordheim electron injection: We found that the degradation of Hf $O_2$/HfS $i_{x}$/ $O_{y}$ gate oxides is more severe when electrons were injected from the gate electrode.e electrode.e.e electrode.e.

  • PDF