• 제목/요약/키워드: myotube formation

검색결과 25건 처리시간 0.02초

건칠(乾漆) 열수 추출물이 근원세포의 근분화에 미치는 영향 (Investigation of the effect of Lacca Sinica Exsiccata water extract on myoblast differentiation)

  • 이상수;김은미;조남준;한효상;김기광
    • 대한본초학회지
    • /
    • 제35권3호
    • /
    • pp.9-16
    • /
    • 2020
  • Objectives : Sarcopenia is a disease that leads to a decrease in skeletal muscle, and the importance of prevention and treatment thereof is increasing in an aging society. However, there is a definite limitation of exercise therapy for sarcopenia, and thus, there is an urgent need for a pharmacologic research to the treatment of sarcopenia. Methods : 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) assay was performed to confirm the antioxidant efficacy of water extract of Lacca Sinica Exsiccata (WELSE). To determine the effect of WELSE on myoblast activity, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay was performed. To confirm the effect of WELSE on the differentiation of myoblast into myotubes, protein expression levels of myosin heavy chain 3 (Myh3) and paired box 3/7 (pax3/7) were confirmed by immunoblot analysis. In addition, immunofluorescence microscopy was performed to confirm the effect on myotube formation of WELSE. Results : It was confirmed that WELSE had high antioxidant activity and showed no cytotoxicity to myoblast up to 200 ㎍/㎖ concentration. Myoblast was treated with WELSE at a concentration of 100 ㎍/㎖ and differentiated for 5 days. The expression of Myh3, which forms myotubes, was promoted and the morphology of myotubes was changed and Increasing the thickness. Conclusions : In this paper, we confirmed the excellent antioxidant efficacy of WELSE and positive effects on muscle differentiation and myotube formation. These results suggest valuable as a material for pharmaceutical research on the prevention and treatment of sarcopenia.

덱사메타손으로 유도된 근위축 C2C12 모델에서 효소처리스테비아의 보호 효과 (Protective Effect of Enzymatically Modified Stevia on C2C12 Cell-based Model of Dexamethasone-induced Muscle Atrophy)

  • 오건;최선일;한웅호;문효;이세정;임지현;이호성;정형동;라문진;권민희;이옥환
    • 한국식품위생안전성학회지
    • /
    • 제38권2호
    • /
    • pp.69-78
    • /
    • 2023
  • 본 연구에서는 EMS를 건강기능식품으로 활용하기 위한 기초적인 데이터를 제공하기 위해 EMS가 DEX으로 유도한 근위축 C2C12 모델에서 미치는 보호 효과를 조사하고자 하였다. DEX를 처리한 근위축 모델을 확립하였다. 그리고 DEX으로 유도한 근위축 C2C12 myotube에 24시간 동안 10, 50, 100 ㎍/mL 농도의 EMS를 처리하였으며, C2C12에 EMS와 DEX를 처리하여 XTT 세포독성 테스트와 myotube 형성 효능(myotube diameter와 fusion index) 측정, 단백질 발현량 분석을 수행하였다. 또한, 기능성을 입증받은 SE를 positive control로 사용하였다. EMS의 세포독성 평가 결과, 100 ㎍/mL 농도까지 유의한 독성이 없는 것을 확인하였다. C2C12 myotube에서 EMS는 DEX만 처리한 실험군과 비교하여 모든 농도에서 유의적으로 세포 보호 효능이 있음을 확인하였다. 또한 fusion index와 myotube diameter를 측정하여 DEX만 처리한 실험군과 비교하였을 때, EMS의 myotube 형성 효능을 확인하였다. EMS는 근육세포 분해 관련 단백질인 Fbx32와 MuRF1의 발현을 감소시키고, 그와 반대로 근력 강화 및 합성과 관련된 단백질인 SIRT1과 p-Akt/Akt의 발현은 증가시켰다. 이러한 연구결과는 EMS가 건강기능식품 개발의 성분으로 활용될 수 있으며, in vivo 동물 모델에서도 활용 가능할 것으로 사료된다.

Principal protocols for the processing of cultured meat

  • Lee, Seung Yun;Kang, Hea Jin;Lee, Da Young;Kang, Ji Hyeop;Ramani, Sivasubramanian;Park, Sungkwon;Hur, Sun Jin
    • Journal of Animal Science and Technology
    • /
    • 제63권4호
    • /
    • pp.673-680
    • /
    • 2021
  • The purpose of this study was to establish a basic principal procedure for the processing of cultured meat. The first stage involved isolating satellite cells from the desired muscle of an animal using enzymatic digestion (i.e., by using proteases, collagenases, and pronases). The second stage involved culturing the isolated muscle satellite cells in a growth medium containing fetal bovine serum and penicillin/streptomycin with growth factors for an optimal period of time. The second stage involved a basic method for the isolated muscle cells to proliferate while sub-culturing to further induce differentiation in gelatin-coated culture dishes with the general culture medium. The third stage involved the induction of differentiation of muscle satellite cells or formation of myotubes using myogenic medium. Lastly, the fourth stage involved the identification of cell differentiation or myotube formation (myogenesis) using fluorescent dyes. Moreover, the principle of these protocols can be applied to perform primary culture of animal cells. This study will assist beginners with the technical aspects of culturing meat (isolation, cultivation, and differentiation of muscle satellite cells as well as identification of myotube formation for myogenesis).

Trans-anethole Suppresses C2C12 Myoblast Differentiation

  • Mi-Ran Lee
    • 대한의생명과학회지
    • /
    • 제29권3호
    • /
    • pp.190-200
    • /
    • 2023
  • Skeletal muscle, essential for metabolism, thermoregulation, and immunity, undergoes myogenic differentiation that results in myotube formation. Trans-anethole (TA), the major constituent in essential oil produced by anise, star anise, and fennel, whose function in skeletal muscle has not yet been elucidated. Therefore, we investigated whether TA influenced muscle differentiation in mouse C2C12 myoblasts. Cells were induced to differentiate using a differentiation medium with or without TA (50 or 200 mg/mL) daily for 5 days. We measured myotube length and diameter after differentiation days 1, 3, and 5 and analyzed the expression of myogenic markers (myoblast determination protein 1, myogenin, myocyte enhancer factor 2, muscle creatine kinase, and myosin heavy chain) and atrophy-related genes (atrogin-1 and muscle ring finger-1 [MuRF-1]) using quantitative real-time PCR. Additionally, we observed the expression of total protein kinase B (Akt) and phosphorylated Akt (p-Akt) using western blotting. Our data showed that TA significantly induced the formation of smaller and thinner myotubes and reduced the myogenic factor expression. Furthermore, the atrogin-1 and MuRF-1 expression markedly increased by TA. Consistent with these findings, TA significantly decreased the expression of total Akt and p-Akt. Taken together, these results indicate that TA inhibits myogenic differentiation of C2C12 cells via reduction of both total Akt and p-Akt. Our findings may provide valuable insights into the impact of PAA on individuals at risk of muscle atrophy.

Ginsenoside Rb1 and Rb2 upregulate Akt/mTOR signaling-mediated muscular hypertrophy and myoblast differentiation

  • Go, Ga-Yeon;Jo, Ayoung;Seo, Dong-Wan;Kim, Woo-Young;Kim, Yong Kee;So, Eui-Young;Chen, Qian;Kang, Jong-Sun;Bae, Gyu-Un;Lee, Sang-Jin
    • Journal of Ginseng Research
    • /
    • 제44권3호
    • /
    • pp.435-441
    • /
    • 2020
  • Background: As a process of aging, skeletal muscle mass and function gradually decrease. It is reported that ginsenoside Rb1 and Rb2 play a role as AMP-activated protein kinase activator, resulting in regulating glucose homeostasis, and Rb1 reduces oxidative stress in aged skeletal muscles through activating the phosphatidylinositol 3-kinase/Akt/Nrf2 pathway. We examined the effects of Rb1 and Rb2 on differentiation of the muscle stem cells and myotube formation. Methods: C2C12 myoblasts treated with Rb1 and/or Rb2 were differentiated and induced to myotube formation, followed by immunoblotting for myogenic marker proteins, such as myosin heavy chain, MyoD, and myogenin, or immunostaining for myosin heavy chain or immunoprecipitation analysis for heterodimerization of MyoD/E-proteins. Results: Rb1 and Rb2 enhanced myoblast differentiation through accelerating MyoD/E-protein heterodimerization and increased myotube hypertrophy, accompanied by activation of Akt/mammalian target of rapamycin signaling. In addition, Rb1 and Rb2 induced the MyoD-mediated transdifferentiation of the rhabdomyosarcoma cells into myoblasts. Furthermore, co-treatment with Rb1 and Rb2 had synergistically enhanced myoblast differentiation through Akt activation. Conclusion: Rb1 and Rb2 upregulate myotube growth and myogenic differentiation through activating Akt/mammalian target of rapamycin signaling and inducing myogenic conversion of fibroblasts. Thus, our first finding indicates that Rb1 and Rb2 have strong potential as a helpful remedy to prevent and treat muscle atrophy, such as age-related muscular dystrophy.

근육세포 분화에 대한 TGF-β1과 OP-1의 억제 효과 (The Inhibitory Effect of TGF-β1 and OP-1 onto the Myogenic Differentiation)

  • 김병국;정성수
    • Journal of Oral Medicine and Pain
    • /
    • 제26권1호
    • /
    • pp.39-50
    • /
    • 2001
  • In order to investigate the effect of Transforming growth factor ${\beta}1$(below TGF-${\beta}1$) and osteogenic protein-1(below Op-1) onto the myogenic differentiation, C2C12 satellite myoblastic cell line was cultured and treated with both growth factors. At first morphological changes with microscopical examination were examined, and isolated total RNA to analyse mRNA expression of bone marker proteins, muscle regulatory proteins, TGF-${\beta}$ receptor and their ligands by Northern blot analysis. And cellular proliferative inducibility of both growth factors was also tested to C2C12 cells. Incubating the cell with $5ng/m{\ell}$ of TGF-${\beta}1$ until 4 days almost inhibited multinucleated myotube formation expressing muscular regulatory proteins, and induced decreasing Id proteins. However, no osteoblastic phenotypes was induced by TGF-${\beta}1$ in C2C12 cells. The mRNA expression of TGF-${\beta}$ receptors with TGF-${\beta}1$ was conversed after 48 hours cultured. Type I TGF-${\beta}$ receptor was seemed to play a role in negative signalling for inhibition of myogenic differentiation. OP-1 dose dependently induced ALP activity, osteopontine production and bone sialoprotein production at concentrations above $100ng/m{\ell}$ and osteocalcin production at concentrations above $300ng/m{\ell}$. The concentration of OP-1 required to induce these osteoblastic phenotypes was the same as that required to almost completely inhibit myotube formation. Incubation with above $100ng/m{\ell}$ OP-1 suppressed the expression of mRNA for muscular egulatory proteins from 2 days after incubation. Expression of Id-1, 2, 3 mRNA were stimulated by OP-1 at concentration above $300ng/m{\ell}$. When C2C12 cells were treated with both growth factors, TGF-${\beta}1$ potentiated the inhibitory effect of OP-1 on myotube formation and expression of mRNA for myogenin at 12 days. And TGF-${\beta}1$ reduced osteocalcin and bone sialoprotein production induced by OP-1 at 12 days in C2C12 cells. Both growth factor had no mitogenic effect. These results indicate that OP-1 converts the differentiation pathway of C2C12 myoblasts into that of osteoblastic lineage cells and it's not heritable, but TGF-${\beta}1$ does not and has reversible inhibitory activity on the myogenic differentiation. TGF-${\beta}1$ and OP-1 play a role in myogenic differentiation via different mechanism between them.

  • PDF

The multifunctional RNA-binding protein hnRNPK is critical for the proliferation and differentiation of myoblasts

  • Xu, Yongjie;Li, Rui;Zhang, Kaili;Wu, Wei;Wang, Suying;Zhang, Pengpeng;Xu, Haixia
    • BMB Reports
    • /
    • 제51권7호
    • /
    • pp.350-355
    • /
    • 2018
  • HnRNPK is a multifunctional protein that participates in chromatin remodeling, transcription, RNA splicing, mRNA stability and translation. Here, we uncovered the function of hnRNPK in regulating the proliferation and differentiation of myoblasts. hnRNPK was mutated in the C2C12 myoblast cell line using the CRISPR/Cas9 system. A decreased proliferation rate was observed in hnRNPK-mutated cells, suggesting an impaired proliferation phenotype. Furthermore, increased G2/M phase, decreased S phase and increased sub-G1 phase cells were detected in the hnRNPK-mutated cell lines. The expression analysis of key cell cycle regulators indicated mRNA of Cyclin A2 was significantly increased in the mutant myoblasts compared to the control cells, while Cyclin B1, Cdc25b and Cdc25c were decreased sharply. In addition to the myoblast proliferation defect, the mutant cells exhibited defect in myotube formation. The myotube formation marker, myosin heavy chain (MHC), was decreased sharply in hnRNPK-mutated cells compared to control myoblasts during differentiation. The deficiency in hnRNPK also resulted in the repression of Myog expression, a key myogenic regulator during differentiation. Together, our data demonstrate that hnRNPK is required for myoblast proliferation and differentiation and may be an essential regulator of myoblast function.

방사선조사가 태내백서의 설조직에 미치는 영향에 관한 전자현미경적 연구 (ULTRASTRUCTURAL STUDY ON THE EFFECT OF RADIATION IN THE RAT FETUS TONGUE.)

  • 한창근
    • 치과방사선
    • /
    • 제13권1호
    • /
    • pp.17-27
    • /
    • 1983
  • The author observed the effects of /sup 60/Co irradiation on the development and subcellular structure of tongue tissue of the fetal rats. The lower left abdomen of mothers were exposed to radiation on 15½th day of gestation with 300R. The fetuses were removed on the 6hr, 14hr, 24hr, 48hr and 72hr after irradiation and the light microscopic and electron microscopic observations of the lingual epithelium, lamina propria and muscle layer were carried out. The results were as follows: 1. The irradiated fetuses showed the retardation of filiform papillae formation. 2. Epithelial cells revealed fusion and myelination of mitochondria, large autolysosomes, increased lipid droplets, retardation of tonofilaments and desmosome formation. 3. In the lamina propria, undifferentiated cells showed bleb formation of nuclear membrane, pyknosis and fragmentation of nucleus, edema of cytoplasm I and nucleus, increased auto-lysosomes, dilatation of cell membrane and cell necrosis. Also, collagenous fibril formation was inhibited by irradiation. 4. In the muscle layer, growth of myotubes was inhibited. Myotubes showed swelling of mitochondria, loss of mitochondrial cristae, autolysosomes, retardation of myofibril formation, and large vacuoles. Undifferentiated cells adjacent myotube contained pyknotic nucleus and autolysosomes. 5. Among the various tissues of tongue, it seems that mesenchymal cells were most radiosensitive.

  • PDF

Myotube differentiation in clustered regularly interspaced short palindromic repeat/Cas9-mediated MyoD knockout quail myoblast cells

  • Kim, Si Won;Lee, Jeong Hyo;Park, Byung-Chul;Park, Tae Sub
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권7호
    • /
    • pp.1029-1036
    • /
    • 2017
  • Objective: In the livestock industry, the regulatory mechanisms of muscle proliferation and differentiation can be applied to improve traits such as growth and meat production. We investigated the regulatory pathway of MyoD and its role in muscle differentiation in quail myoblast cells. Methods: The MyoD gene was mutated by the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 technology and single cell-derived MyoD mutant sublines were identified to investigate the global regulatory mechanism responsible for muscle differentiation. Results: The mutation efficiency was 73.3% in the mixed population, and from this population we were able to establish two QM7 MyoD knockout subline (MyoD KO QM7#4) through single cell pick-up and expansion. In the undifferentiated condition, paired box 7 expression in MyoD KO QM7#4 cells was not significantly different from regular QM7 (rQM7) cells. During differentiation, however, myotube formation was dramatically repressed in MyoD KO QM7#4 cells. Moreover, myogenic differentiation-specific transcripts and proteins were not expressed in MyoD KO QM7#4 cells even after an extended differentiation period. These results indicate that MyoD is critical for muscle differentiation. Furthermore, we analyzed the global regulatory interactions by RNA sequencing during muscle differentiation. Conclusion: With CRISPR/Cas9-mediated genomic editing, single cell-derived sublines with a specific knockout gene can be adapted to various aspects of basic research as well as in functional genomics studies.

Deficiency of Anoctamin 5/TMEM16E causes nuclear positioning defect and impairs Ca2+ signaling of differentiated C2C12 myotubes

  • Phuong, Tam Thi Thanh;An, Jieun;Park, Sun Hwa;Kim, Ami;Choi, Hyun Bin;Kang, Tong Mook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권6호
    • /
    • pp.539-547
    • /
    • 2019
  • Anoctamin 5 (ANO5)/TMEM16E belongs to a member of the ANO/TMEM16 family member of anion channels. However, it is a matter of debate whether ANO5 functions as a genuine plasma membrane chloride channel. It has been recognized that mutations in the ANO5 gene cause many skeletal muscle diseases such as limb girdle muscular dystrophy type 2L (LGMD2L) and Miyoshi muscular dystrophy type 3 (MMD3) in human. However, the molecular mechanisms of the skeletal myopathies caused by ANO5 defects are poorly understood. To understand the role of ANO5 in skeletal muscle development and function, we silenced the ANO5 gene in C2C12 myoblasts and evaluated whether it impairs myogenesis and myotube function. ANO5 knockdown (ANO5-KD) by shRNA resulted in clustered or aggregated nuclei at the body of myotubes without affecting differentiation or myotube formation. Nuclear positioning defect of ANO5-KD myotubes was accompanied with reduced expression of Kif5b protein, a kinesin-related motor protein that controls nuclear transport during myogenesis. ANO5-KD impaired depolarization-induced $[Ca2^{+}]_i$ transient and reduced sarcoplasmic reticulum (SR) $Ca^{2+}$ storage. ANO5-KD resulted in reduced protein expression of the dihydropyridine receptor (DHPR) and SR $Ca^{2+}-ATPase$ subtype 1. In addition, ANO5-KD compromised co-localization between DHPR and ryanodine receptor subtype 1. It is concluded that ANO5-KD causes nuclear positioning defect by reduction of Kif5b expression, and compromises $Ca^{2+}$ signaling by downregulating the expression of DHPR and SERCA proteins.