• Title/Summary/Keyword: myosin light chain kinase

Search Result 44, Processing Time 0.028 seconds

The Effect of Sagunja Decoction on Functional Dyspepsia - A Systematic Review and Meta-Analysis (기능성 소화불량에 대한 사군자탕의 치료효과 - 체계적 문헌고찰과 메타분석)

  • Kim, Kyong-lim;Je, Yu-ran;Kim, Kyoung-min
    • The Journal of Internal Korean Medicine
    • /
    • v.42 no.3
    • /
    • pp.259-278
    • /
    • 2021
  • Objectives: This study examines the effect of Sagunja-tang on functional dyspepsia (FD) through a systematic review and meta-analysis of a randomized controlled trial (RCT). Methods: A search for RCTs that tested the effect of Sagunja-tang on functional dyspepsia was conducted in Medline, Embase, PubMed, CENTRAL, CiNii, CNKI, NDSL, RISS, OASIS, and KISS databases on November 8, 2020, with no limit on the year of publication. A meta-analysis was performed by synthesizing the findings, including total efficiency, clinical symptom score, myosin light-chain kinase (MLCK) level (pg/mL, and gastric half-emptying time (min). RevMan 5.4.1 software was used for data analysis. The quality of the literature was evaluated using Cochrane's risk of bias (RoB) tool. Results: A total of 14 RCTs met the selection criteria. As a result of the meta-analysis, the treatment group had higher total efficacy and MLCK levels (gastric antrum, jejunum) than the control group, and the clinical symptom score and gastric half-emptying time were lower. However, due to the low quality of the included RCT and the small sample size, the results may be slightly biased.

Pathophysiology and protective approaches of gut injury in critical illness

  • Jung, Chang Yeon;Bae, Jung Min
    • Journal of Yeungnam Medical Science
    • /
    • v.38 no.1
    • /
    • pp.27-33
    • /
    • 2021
  • The gut is a complex organ that has played an important role in digestion, absorption, endocrine functions, and immunity. The gut mucosal barriers consist of the immunologic barrier and nonimmunologic barrier. During critical illnesses, the gut is susceptible to injury due to the induction of intestinal hyperpermeability. Gut hyperpermeability and barrier dysfunction may lead to systemic inflammatory response syndrome. Additionally, gut microbiota are altered during critical illnesses. The etiology of such microbiome alterations in critical illnesses is multifactorial. The interaction or systemic host defense modulation between distant organs and the gut microbiome is increasingly studied in disease research. No treatment modality exists to significantly enhance the gut epithelial integrity, permeability, or mucus layer in critically ill patients. However, multiple helpful approaches including clinical and preclinical strategies exist. Enteral nutrition is associated with an increased mucosal barrier in animal and human studies. The trophic effects of enteral nutrition might help to maintain the intestinal physiology, prevent atrophy of gut villi, reduce intestinal permeability, and protect against ischemia-reperfusion injury. The microbiome approach such as the use of probiotics, fecal microbial transplantation, and selective decontamination of the digestive tract has been suggested. However, its evidence does not have a high quality. To promote rapid hypertrophy of the small bowel, various factors have been reported, including the epidermal growth factor, membrane permeant inhibitor of myosin light chain kinase, mucus surrogate, pharmacologic vagus nerve agonist, immune-enhancing diet, and glucagon-like peptide-2 as preclinical strategies. However, the evidence remains unclear.

Signals of MLCK and ROCK Pathways Triggered via Lymphotoxin β Receptor are Involved in Stress Fiber Change of Fibroblastic Reticular Cells (FRC에서 Lymphotoxin β receptor의 자극은 MLCK와 ROCK의 이중 신호전달 경로를 통해 stress fiber 변화에 관여)

  • Kim, Dae Sik;Lee, Jong-Hwan
    • Journal of Life Science
    • /
    • v.29 no.2
    • /
    • pp.256-264
    • /
    • 2019
  • Lymphotoxin ${\beta}$ receptor ($LT{\beta}R$), a member of the tumor necrosis factor receptor family, plays an important role in lymphoid tissue's architecture and organogenesis. In contrast, MLCK and ROCK play critical roles in the regulation of stress fiber (SF) formation in cells. To determine whether $LT{\beta}R$ stimulation in fibroblastic reticular cells (FRCs) is involved in these signaling pathways, myosin light chain kinase inhibitor-7 (ML-7) was used to inhibit them. ML7-treated FRCs completely blocked SFs and showed retraction and shrinkage processes comparable to those observed in agonistic anti-$LT{\beta}R$ antibody-treated cells. The inhibition of ROCK activity with Y27632-induced changes in actin cytoskeleton organization and cell morphology in FRCs. Actin bundles rearranged into SFs, and phospho-myosin light chain (p-MLC) co-localized in FRCs. We checked the level of Rho-guanosine diphosphate (RhoGDP)/guanosine triphosphate (GTP) exchange activity using FRC lysate. When $LT{\beta}R$ was stimulated with agonistic anti-$LT{\beta}R$ antibodies, Rho-GDP/GTP exchange activity was markedly reduced. Regarding $LT{\beta}R$ signaling with a focus on MLCK inhibition, we showed that the phosphorylation of MLCs was reduced by $LT{\beta}R$ stimulation in FRCs. Cytoskeleton components, such as tubulin, b-actin, and phospho-ezrin proteins acting as membrane-cytoskeleton linkers, were produced in de-phosphorylation, and they reduced expression in agonistic anti-$LT{\beta}R$ antibody-treated FRCs. Collectively, the results suggested that MLCK and ROCK were simultaneously responsible for SF regulation triggered by $LT{\beta}R$ signaling in FRCs.

SM22α Is Required for Agonist-induced Regulation of Contractility: Evidence from SM22α Knockout Mice

  • Je, Hyun Dong;Sohn, Uy Dong
    • Molecules and Cells
    • /
    • v.23 no.2
    • /
    • pp.175-181
    • /
    • 2007
  • The present study was undertaken to determine whether $SM22{\alpha}$ participates in the regulation of vascular smooth muscle contractility using $SM22{\alpha}$ knockout mice and, if so, to investigate the mechanisms involved. Aortic ring preparations were mounted and equilibrated in organ baths for 60 min before observing contractile responses to 50 mM KCl, and then exposed to contractile agents such as phenylephrine and phorbol ester. Measurement of isometric contractions using a computerized data acquisition system was combined with molecular or cellular experiments. Interestingly, the aortas from $SM22{\alpha}$-deficient mice ($SM22^{-/-LacZ}$) displayed an almost three-fold increase in the level of $SM22{\beta}$ protein compared to wild-type mice, but no change in the levels of caldesmon, actin, desmin or calponin. $Ca^{2+}$-independent contraction in response to phenylephrine or phorbol ester was significantly decreased in the $SM22{\alpha}$-deficient mice, whereas in the presence of $Ca^{2+}$ neither contraction nor subcellular translocation of myosin light chain kinase (MLCK) in response to phenylephrine or 50 mM KCl was significantly affected. A decrease in phosphorylation of extracellular signal regulated kinase (ERK) 1/2 was observed in the $SM22{\alpha}$-deficient mice and this may be related to the decreased vascular contractility. Taken together, this study provides evidence for a pivotal role of $SM22{\alpha}$ in the regulation of $Ca^{2+}$-independent vascular contractility.

Structure-Activity Relationships of Dimethylsphingosine (DMS) Derivatives and their Effects on Intracellular pH and $Ca^{2+}$ in the U937 Monocyte Cell Line

  • Chang, Young-Ja;Lee, Yun-Kyung;Lee, Eun-Hee;Park, Jeong-Ju;Chung, Sung-Kee;Im, Dong-Soon
    • Archives of Pharmacal Research
    • /
    • v.29 no.8
    • /
    • pp.657-665
    • /
    • 2006
  • We recently reported that dimethylsphingosine (DMS), a metabolite of sphingolipids, increased intracellular pH and $Ca^{2+}$ concentration in U937 human monocytes. In the present study, we found that dimethylphytosphingosine (DMPH) induced the above responses more robustly than DMS. However, phytosphingosine, monomethylphytosphingosine or trimethylsphingosine showed little or no activity. Synthetic C3 deoxy analogues of sphingosine did show similar activities, with the C16 analogue more so than C18. The following structure-activity relationships were observed between DMS derivatives and the intracellular pH and $Ca^{2+}$ concentrations in U937 monocytes; 1) dimethyl modification is important for the DMS-induced increase of intracellular pH and $Ca^{2+}$, 2) the addition of an OH group on C4 enhances both activities, 3) the deletion of the OH group on C3 has a negligible effect on the activities, and 4) C16 appears to be more effective than C18. We also found that W-7, a calmodulin inhibitor, blocked the DMS-induced pH increase, whereas, KN-62, ML9, and MMPX, specific inhibitors for calmodulin-dependent kinase II, myosin light chain kinase, and $Ca^{2+}$-calmodulin-dependent phosphodiesterase, respectively, did not affect DMS-induced increases of pH in the U937 monocytes.

AMPK γ is Required for Maintaining Epithelial Cell Structure and Polarity (AMPK γ 유전자의 표피세포극성 유지기능 규명)

  • Koh, Hyong-Jong
    • Journal of Life Science
    • /
    • v.21 no.5
    • /
    • pp.621-626
    • /
    • 2011
  • AMP-activated protein kinase (AMPK), a heterotrimeric complex comprising a catalytic ${\alpha}$ subunit and regulatory ${\beta}$ and ${\gamma}$ subunits, has been primarily studied as a major metabolic regulator in various organisms, but recent genetic studies discover its novel physiological functions. The first animal model with no functional AMPK ${\gamma}$ subunit gene was generated by using Drosophila genetics. AMPK ${\gamma}$ flies demonstrated lethality with severe defects in cuticle formation. Further histological analysis found that deletion of AMPK ${\gamma}$ causes severe defects in cell polarity in embryo epithelia. The phosphorylation of nonmuscle myosin regulatory light chain (MRLC), a critical regulator of epithelial cell polarity, was also diminished in AMPK ${\gamma}$ embryo epithelia. These defects in AMPK ${\gamma}$ mutant epithelia were successfully restored by over-expression of AMPK ${\gamma}$. Collectively, these results suggested that AMPK ${\gamma}$ is a critical cell polarity regulator in metazoan development.

Changes in Cytosolic $Ca^{2+}$ but not in cGMP Contents May be more Important to Nitric Oxide-Mediated Relaxation in Depolarized Vascular Smooth Muscle

  • Lee, Hyun-Seok;Chang, Ki-Churl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.1
    • /
    • pp.63-68
    • /
    • 1998
  • Nitric oxide (NO)-mediated relaxation in vascular smooth muscle involves not only activation of guanylate cyclase but also hyperpolarization of the membrane. It has been shown that depolarization decreases the [$Ca^{2+}$] sensitivity of myosin light chain kinase in arterial smooth muscle, and nitric oxide (NO)-mediated relaxation was attenuated in this situation. However, why potassium inhibits or attenuates the action of EDRF/NO is not clear. Therefore, we investigated the magnitude of relaxation and cGMP contents using measures known to release NO, such as photorelaxation, photo activated NO-mediated relaxation, and NO-donor (SNP)-mediated relaxation in porcine coronary arterial rings in which contractile conditions were made by different degree of depolarization, i.e., contraction in response to U46619 or U46619 plus KCl. In all cases, the magnitude of relaxation was significantly greater (P<0.05) in U46619-contracted rings than in U46619+KCl-contracted ones. Although accumulation of cGMP was evident with three measures employed in the present study, no difference was found in cGMP contents between U46619 and U46619+KCl conditions, indicating that the diminished relaxation in KCl containing solution is cGMP-independent mechanism(s). To understand this further, cytosolic $Ca^{2+}$ changes due to NO were compared in rat thoracic aorta by exploiting photoactivated NO using streptozotocin (STZ) that was contracted with either NE or KCl. Fura-3 $[Ca]_{cyt}$ signal caused by NO was small and transient in high $K^+$-, but large and sustained in NE-contracted aorta. The inhibitory potency of STZ expressed in terms of $IC_{50}$ was 5.14 and 3.88 ${\mu}M$ in NE and in high $K^+$, respectively. These results suggest that modification of the cellular mobilization of $Ca^{2+}$ rather than cGMP levels may be an important mechanism for the NO-mediated relaxation when vascular membrane is depolarized, such as atherosclerosis and hypertension.

  • PDF

New Insights into 4-Amino-2-tri-fluoromethyl-phenyl Ester Inhibition of Cell Growth and Migration in the A549 Lung Adenocarcinoma Cell Line

  • Wang, Hao;Gui, Shu-Yu;Chen, Fei-Hu;Zhou, Qing;Wang, Yuan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7265-7270
    • /
    • 2013
  • Objective: The present study was designed to investigate the probable mechanisms of synthetic retinoid 4-amino-2-tri-fluoromethyl-phenyl ester (ATPR) inhibition of the proliferation and migration of A549 human lung carcinoma cells. Materials and Methods: After the A549 cells were treated with different concentrations of ATPR or all-trans retinoic acid (ATRA) for 72 h, scratch-wound assays were performed to assess migration. Immunofluorescence was used to determine the distribution of CAV1 and $RXR{\alpha}$, while expression of CAV1, MLCK, MLC, P38, and phosphorylation of MLC and P38 were detected by Western blotting. Results: ATPR could block the migration of A549 cells. The relative migration rate of ML-7 group had significantly decreased compared with control group. In addition, ATPR decreased the expression of a migration related proteins, MLCK, and phosphorylation of MLC and P38. ATPR could also influence the expression of RARs or RXRs. At the same time, CAV1 accumulated at cell membranes, and $RXR{\alpha}$ relocated to the nucleus after ATPR treatment. Conclusions: Caveolae may be implicate in the transport of ATPR to the nucleus. Change in the expression and distribution of $RXR{\alpha}$ may be implicated in ATPR inhibition of A549 cell proliferation. The mechanisms of ATPR reduction in A549 cell migration may be associated with expression of MLCK and phosphorylation of MLC and P38.

A Study on Single Cell Polarized Signals Using Polydimethylsiloxane-based Micropatterned Channel System (폴리디메틸실록산 기반 마이크로패턴 채널 시스템을 이용한 단일 세포의 극성 신호에 관한 연구)

  • Suh, Jung-Soo;Lee, Chanbin;Pan, Yijia;Wang, Yingxiao;Jung, Youngmi;Kim, Tae-Jin
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.122-126
    • /
    • 2020
  • In this study, we produced the micropatterned channel system using polydimethylsiloxane (PDMS) and micromolding in capillaries (MIMIC) technology and evaluated cellular polarity signals through high-resolved imaging at the single-cell level. In cells treated with platelet-derived growth factor (PDGF), three types of key signals in cell migration; phosphoinositide 3-kinase (PI3 K), Rac, and Actin, were strongly activated in the front area compared to the rear region, whereas myosin light chain (MLC) showed no notable activity in the front and rear areas. Our results will, therefore, provide important information and methodology for studying the correlation between cell polarity signals and cell migration under the newly defined microenvironment.

Proteome analysis of chickens fed with tissue culture medium waste after harvest of Korean wild ginseng (산삼 배양액을 급여한 육계에서 근육의 프로테옴 분석)

  • Seol, Jae-Won;Hwang, In Ho;Chae, Joon-Seok;Kang, Hyung-Sub;Ryu, Kyeong-Seon;Kang, Chun-Seong;Park, Sang-Youel
    • Korean Journal of Veterinary Research
    • /
    • v.45 no.2
    • /
    • pp.155-161
    • /
    • 2005
  • Proteomics is a useful approach to know protein expression, post-translational modification and protein function. We investigated the protein expression pattern and identity in chickens fed with the tissue culture medium waste after harvest of Korean wild ginseng (TCM-KWG) (Panax ginseng). Two groups (n=60/group) of day old broiler chickens were administered with 0 (control) and 0.8% (treatment) TCM-KWG through drinking water. After 5 weeks, we examined the protein expression pattern of fibularis longus and superficial pectoral muscle by Two-dimensional electrophoresis analysis. Interestingly, TCM-KWG treatment significantly increased five spot's density, and markedly reduced five spot's density in the muscles. We identified 10 proteins (desmin, myosin light chain 1, heat shock 25 kDa protein, collapsin response mediator protein-2A, alpha enolase, vimentin, actin alpha 1, my023 protein, pyruvate kinase and troponin T) by the matrix-assisted laser desorption ionization time of flight (MALDI-TOF).