• Title/Summary/Keyword: myocytes

Search Result 182, Processing Time 0.023 seconds

The role of $Na^+-Ca^{2+}$ exchange on calcium activated chloride current in single isolated cardiac myocyte in pulmonary vein of rabbit.

  • Kim, Won-Tae;Lee, Yoon-Jin;Ha, Jeong-Mi;Han Choe;Jang, Yeon-Jin;Park, Chun-Sik;Lee, Chae-Hun m
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.37-37
    • /
    • 2003
  • We have shown the $Ca^{2+}$-activated chloride current is present in cardiac myocyte in rabbit pulmonary vein (Kim et al., 2002). This current amplitude was increased as [N $a^{+}$]$_{i}$ was increased and we suggested this chloride current may be involve in the spontaneous action potential frequency change. Since this current is activated by the increase of intracellular $Ca^{2+}$, we would like to test what is the inducer of the increase of [C $a^{2+}$]$_{i}$ between a L-type $Ca^{2+}$-current or a reverse mode of N $a^{+}$-C $a^{2+}$ exchange current. White rabbit (1.5 kg) was used and anesthetized with Ketamin (100 mg/kg). Pulmonary vein (PV) was isolated and sleeve area between left atrium and PV was dissected. Using collagenase (Worthington 0.7 mg/cc), single cardiac myocytes were isolated. In the presence of 15 mM of N $a^{+}$, three steps of voltage pulses were applied (holding potential : -40 ㎷, -80 ㎷ for 50 msec, 30 ㎷ for 5 msec, 10 ㎷ steps from -70 ㎷ to 60 ㎷). The inward and outward tail current was activated after brief 5 msec prepulse. The outward tail current was blocked by the removal of extracellular chloride substituted by glucuronic acid or by a chloride channel blocker, 5 mM 9-AC. But the inward tail current was still remained even though the amplitude was decreased. The reversal potentials were changed to the direction of the change of chloride equilibrium potential ( $E_{Cl}$ ) but the shift of equilibrium potential was not enough to match to the theoretical equilibrium potential shift. In the presence of L-type $Ca^{2+}$ channel blocker, nifedipine 1 uM, inward tail currents were greatly reduced but the outward current tail currents were still remained. In the presence of N $a^{+}$-C $a^{2+}$ exchange current blocker, 10 uM KB-R7943, the inward and outward tail currents were blocked almost completely. We tried to test the $Ca^{2+}$sensitivity of the chloride current with various [C $a^{2+}$]$_{i}$ in pipette solution from 100 nM to 1 uM but we failed to activate $Ca^{2+}$-activated chloride currents even though the cell became contracted in the presence of 1 uM $Ca^{2+}$. From these results, we could conclude that the increase of [C $a^{2+}$]$_{i}$ to activate the outward $Ca^{2+}$-activated chloride current was mainly induced by the activation of the reverse mode of N $a^{+}$-C $a^{2+}$ exchanger, But for the increase of [C $a^{2+}$]$_{i}$ to activate the inward tail current, L-type $Ca^{2+}$ current may be the major provoking current. Since the cytosolic increase of [C $a^{2+}$]$_{i}$ through pipette solution have failed to activate $Ca^{2+}$-activated chloride current, this chloride current may have very low $Ca^{2+}$ sensitivity or a comparmental increase $Ca^{2+}$ such as in subsarcolemmal space may activate the chloride current. Since there are several reports and models that the increase of $Ca^{2+}$ in subsarcolemmal space would be over several to tens of uM, both possibility may be valid together.uM, both possibility may be valid together.

  • PDF

The Experimental Study for Myocardial Preservation Effect of Ischemic Preconditioning (허혈성 전조건화 유발이 심근보호에 미치는 영향에 관한 실험적 연구)

  • 이종국;박일환;이상헌
    • Journal of Chest Surgery
    • /
    • v.37 no.2
    • /
    • pp.119-130
    • /
    • 2004
  • Decrease in cardiac function after open heart surgery is due to an ischemia induced myocardial damage during surgery, and ischemic preconditioning, a condition in which the myocardial damage does not accumulate after repeated episodes of ischemia but protects itself from damage after prolonged ischemia due to myocytes tolerating the ischemia, is known to diminish myocardial damage, which also helps the recovery of myocardium after reperfusion, and decreases incidences of arrythmia. Our study is performed to display the ischemic preconditioning and show the myocardial protective effect by applying cardioplegic solution to the heart removed from rat. Material and Method: Sprague-Dawley male rats were used, They were fixed on a modified isolated working heart model after cannulation. The reperfusion process was according to non-working and working heart methods and the working method was executed for 20 minutes in which the heart rate, aortic pressure, aortic flow and coronary flow were measured and recorded. The control group is the group which the extracted heart was fixed on the isolated working heart model, recovered by reperfusion 60 minutes after infusion and preserved in the cardioplegic solution 20 minutes after the working heart perfusion and aortic cross clamp, The thesis groups were divided into group I, which ischemic hearts that were hypoxia induced were perfused by cardioplegic solution and preserved for 60 minutes; group II, the cardioplegic solution was infused 45 seconds (II-1), 1 minutes (II-2), 3 minutes (II-3), after the ischemia induction, 20 minutes after working heart perfusion and aortic cross clamp; and group III, hearts were executed on working heart perfusion for 20 minutes and aortic cross clamp was performed for 45 seconds (III-1), 1minute (III-2), 3 minutes (III-3), reperfused for 2 minutes to recover the heart, and then aortic cross clamping was repeated for reperfusion, all the groups were compared based on hemodynamic performance after reperfusion of the heart after preservation for 60 minutes. Result: The recovery time until spontaneous heart beat was longer in groups I, II-3, III-2 and III-3 to control group (p<0.01). Group III-1 (p<0.05) had better results in terms of recovery in number of heart rates compared to control group, and recovered better compared to II-1 (p<0.05). The recovery of aortic blood pressure favored group III-1 (p<0.05) and had better outcomes compared with II-1 (p<0.01). Group III-1 also showed best results in terms of cardiac output (p<0.05) and group III-2 was better compared to II-2 (p<0.05). Group I (p<0.01) and II-3 (p<0.05) showed more cardiac edema than control group. Conclusion: When the effects of other organs are dismissed, protecting the heart by infusion of cardioplegic solution after enforcing ischemia for a short period of time before the onset of abnormal heart beats for preconditioning has a better recovery effect in the cardioplegic group with preconditioning compared to the cardioplegic solution itself. we believe that further study is needed to find a more effective method of preconditioning.