• Title/Summary/Keyword: mycosporine-like amino acid

Search Result 7, Processing Time 0.021 seconds

Composite Nanofilm of Polypyrrole and Mycosporine-like Amino Acids for UV sensor

  • Jin, Yinhua;Kulkarni, Atul;Qin, Hongyi;Kim, Dae-hwan;Yu, Yeong Wook;Lee, Joon Chul;Kim, Taesung;Moh, Sang Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.354.2-354.2
    • /
    • 2016
  • Mycosporine-like amino acids (MAAs) are small secondary metabolites produced by organisms that live in environments with high volumes of sunlight, is an important group of novel bioactive compounds having immense biotechnological poten-tials due to their UV screening properties and Polypyrrole (PPy) is a type of organic polymer formed by polymerization of pyrrole. A novel composite nanofilm (~60 nm) of mycosporine-like amino acid (MAA) and polypyrrole is synthesized by interfacial polymerization technique. This composite nanofilm is conductive and has strong photoresponse. A photoelectric UV sensor is fabricated by depositing the composite film onto a silicon chip. This UV sensor shows good sensitivity, selectivity and stability for UV detection.

  • PDF

Singlet Oxygen Quenching by Deoxygadusol and Related Mycosporine-Like Amino Acids from Phytoplankton Prorocentrum micans

  • Suh, Hwa-Jin;Lee, Hyun-Woo;Jung. Jin
    • Journal of Photoscience
    • /
    • v.11 no.32
    • /
    • pp.77-81
    • /
    • 2004
  • Deoxygadusol (DO) and structurally related mycosporine-like amino acids, i.e. mycosporine glycine (MO) and mycosporine taurine (MT), were isolated from phytoplankton Prorocentrum micans and studied for the reactivity toward singlet oxygen. These water-soluble compounds with a cyclohexenone chromophore were all shown to be highly effective in quenching singlet oxygen ($^1$ $O_2$), with the efficiencies being significantly larger compared with histidine, a well-known $^1$ $O_2$ quencher. The $^1$ $O_2$ reaction rate constant ( $k_{Q}$) of DG was determined to be 5.4 ${\times}$ 10$^{7}$ $M^{-1}$ $s^{-1}$ by a steady state method based on competitive inhibition of rubrene oxidation. The feasibility of this method was confirmed by estimating the $k_{Q}$ values for MG and two other quenchers, furfuryl alcohol and 1,4-diazabicyclo [2,2,2]octane, and comparing with those values determined by the time-resolved $^1$ $O_2$ decay method in the previous work.ork.

  • PDF

Genetic and biochemical evidence for redundant pathways leading to mycosporine-like amino acid biosynthesis in the cyanobacterium Sphaerospermopsis torques-reginae ITEP-024

  • Geraldes, Vanessa;de Medeiros, Livia Soman;Lima, Stella T.;Alvarenga, Danillo Oliveira;Gacesa, Ranko;Long, Paul F.;Fiore, Marli Fatima;Pinto, Ernani
    • ALGAE
    • /
    • v.35 no.2
    • /
    • pp.177-187
    • /
    • 2020
  • Cyanobacteria have been widely reported to produce a variety of UV-absorbing mycosporine-like amino acids (MAAs). Herein, we reported production of the unusual MAA, mycosporine-glycine-alanine (MGA) in the cyanobacterium Sphaerospermopsis torques-reginae ITEP-024 using a newly developed UHPLC-DAD-MS/HRMS (ultra-high performance liquid chromatography-diode array detection-high resolution tandem mass spectrometry) method. MGA had previously been first identified in a red-algae, but S. torques-reginae strain ITEP-024 is the first cyanobacteria to be reported as an MGA producer. Herein, the chemical structure of MGA is fully elucidated from one-dimensional / two-dimensional nuclear magnetic resonance and HRMS data analyses. MAAs are unusually produced constitutively in S. torques-reginae ITEP-024, and this production was further enhanced following UV-irradiance. It has been proposed that MAA biosynthesis proceeds in cyanobacteria from the pentose phosphate pathway intermediate sedoheptulose 7-phosphate. Annotation of a gene cluster encoded in the genome sequence of S. torques-reginae ITEP-024 supports these gene products could catalyse the biosynthesis of MAAs. However, addition of glyphosate to cultures of S. torques-reginae ITEP-024 abolished constitutive and ultra-violet radiation induced production of MGA, shinorine and porphyra-334. This finding supports involvement of the shikimic acid pathway in the biosynthesis of MAAs by this species.

Anti-corrugation activity of micosporine-like amino acid mixtures from Chlamydomonas sp. (Chlamydomonas sp. 유래 mycosporine-like amino acid 혼합물의 항주름 활성)

  • Suh, Sung-Suk;Seo, Hyo Hyun;Lee, Jeong Hun;Hwang, Jinik;Park, Mirye;Moh, Sang Hyun;Lee, Taek-Kyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.5393-5399
    • /
    • 2014
  • To examine the effects of a mycosporine-like amino acids (MAAs) mixture from microalgae, Chlamydomonas sp, on the anti-wrinkle activities, the expression levels of genes that are associated with skin aging, including type I procollagen, elastin and involucrin, were analyzed. Asterina 330+palythine (A+P) and shinorine+palythine (S+P) mixtures were purified from Chlamydomonas sp using the following steps: 80% methanolic extraction, column purification, and HPLC analysis. As a result of the MTT assay, A+P and S+P did not induce cellular cytotoxicity with up to 0.1 mg/mL of both MAAs. In addition, the treatment of UV-exposed fibroblasts with A+P (0.05 mg/mL) and S+P (0.01 mg/mL) increased the levels of the PCOLCE mRNAs by 2.7 and 3.6 fold compared to the control group, respectively, The levels of elastin gene expression were elevated 5.59 and 3.1 fold in the A+P and S+P treated (0.01 mg/mL) cells, respectively. In particular, at a concentration of 0.01 mg /mL, the A+P and S+P expression levels of Involucrin mRNAs were increased 3.5 and 2.5 fold in the UV-exposed cells compared to the control, respectively. In conclusion, the MAAs derived from Chlamydomonas sp can be utilized as functional cosmetic materials with anti-wrinkle effects on the skin.

Production Yield Enhancement of Mycosporine-like amino acid(MAA)s in Transformed Microalgae Culture by Radiofrequency (형질전환 미세조류의 고주파 처리 배양을 통한 MAA 생산량 증가)

  • Seo, Hyo Hyun;Song, Mi Young;Kulkarni, Atul;Suh, Sung-Suk;Lee, Taek-Kyun;Moh, Sang Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3799-3804
    • /
    • 2014
  • In sea water, microalgae are exposed to a range of critical environmental conditions. Microalgae are protected from UV-A radiation due to the presence of mycosporine like amino acids(MAAs). Owing to the UV-A absorption properties of MAAs, they are used widely as a UV protecting ingredient in cosmetics. Therefore, there is a need to increase the production yield of MAAs. This study investigated the production yield of MAAs in transformed microalgae by radiofrequency(RF) exposure. Initially, the Glut-1 gene was transformed to Chlamydomonas hedleyi microalgae as a glucose transporter. The biomass was enhanced after Glut-1 gene transformation. In addition, the MAAs production yield was increased during large scale production in bioreactors due to the RF treatment. Therefore, purified extracts of MAAs can be used as a sun block material in the cosmetic industrial field.

Role of Shinorine derived from Microalgae in skin protection (미세조류 유래 Shinorine의 피부세포에서의 효능)

  • Jung, Hae Soo;Cho, Moon Jin;Seo, Hyo Hyun;Kulkarni, Atul;Suh, Seung Suk;Lee, Taek Kyun;Moh, Sang Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4416-4422
    • /
    • 2014
  • In the present study, mycosporine-like amino acids (MAAs)were extracted from in Chlamydomonas hedleyi, and their function was investigated regarding to protective capacity against UV radiation and a possibility to be developed into functional suncream including MAAs by using natural compounds. In particulr, we assessed UV protective ability and anti-inflammation of shinorine in human skin cells. As a result, shinorine can protect the skin against damage by the absorption of energy from UV radiation and functions as an anti-wrinkling substrate through a increase of collagen synthesis. These data suggest that shinorine can be utilized not only as a substrate to protect UV radiation, but anti-aging material in cosmetic products.

Effect of sun screen utilizing Porphyra-334 derived from Ocean Algae for skin protection (해양조류 유래 Porphyra-334의 UV 흡수능에 의한 피부세포 보호 효과)

  • Cho, Moon Jin;Jung, Hae Soo;Song, Mi Young;Seo, Hyo Hyun;Kulkarni, Atul;Suh, Seung Suk;Lee, Taek Kyun;Moh, Sang Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4272-4278
    • /
    • 2014
  • One of the most effective ways of preventing skin aging is to protect the skin from UV radiation, which was identified as the primary cause of photoaging. Therefore, it is necessary to develop natural and environment-friendly materials to the human skin. This study examined the effects of MAAs extracted from Chlamydononas hedleyi on UV protection and anti-inflammation in human skin cells. The function of porphyra-334 in the skin, which was isolated and purified from MMAs mixture, was tested in terms of its UV protective ability and anti-inflammation. As a result, porphyra-334 played a role in protecting the skin from UV radiation and anti-inflammation through the suppression of COX-2 expression. These results suggest that porphyra-334 can be a useful material in cosmetic products because it can protect the skin from UV radiation and anti-inflammation.