• Title/Summary/Keyword: mycorrhizal synthesis

Search Result 6, Processing Time 0.022 seconds

Comparison of mycorrhizal fungi associated with Pinus species in cultural characteristics and artificial mycorrhizal synthesis on Pinus thunbergii seedlings (소나무류 균근균의 배양적 특성비교 및 인공접종에 의한 해송묘목에의 균근협성)

  • Lee, Jong Kyu;Lee, Hoon Yong;Lee, Sang Yong
    • Journal of Forest and Environmental Science
    • /
    • v.15 no.1
    • /
    • pp.77-88
    • /
    • 1999
  • This experiment was carried out to compare the cultural characteristics of mycorrizal fungi associated with Pinus species, and to form mycorrhizal association with Pinus thunbergii by artificial inoculation of these fungi. Mycorrhizal fungi tested showed great variations in cultural characteristics. Most fungal isolates was best grown on MP medium, except PDA for Lepista sp.(Ln73/92). Hagem for Rhizopogon rubescens(FRI91017), and FDA for Paxillus sp.(Pa60/92). Optimum temperature for these fungi was $25^{\circ}C$, except $30^{\circ}C$ for Pisolithus tinctorius(FRI91004 and Pt1). The range of pH conditions favorable for these fungal isolates were also variable from weak acidic(pH5) to weak alkalic(pH8). Utilization of the carbon sources for these mycorrhizal fungi was different. Fructose, glucose, and maltose were all utilized well, while xylose was not utilized generally. Mycelial growth on the media supplemented with potassium nitrate was better than those on other media with urea, asparagine, or peptone as a nitrogen source, and the poor growth was observed on the media with urea. Pisolithus tinctorius(Pt1) among 7 mycorrhizal fungi artificially inoculated for the mycorrhizal synthesis on pinus thunbergii seedlings in the test tube containing a mixture of peat moss-vermiculite(2:1, v/v) formed mycorrhizae successfully after 3 months. P. tinctorius formed branched and unbranched roots covered with thick fungal mantle and radiating extemal hyphae. Mycorrhizal root cross-sectioned by hand, stained, and observed by Nomarski interference microscope showed typical characteristics of ectomycorrhizae: fungal mantle on epidermal cells and thick Hartig net hyphae around cortex cells.

  • PDF

Mycorrhizal Synthesis of Périgord Black Truffle (Tuber melanosporum) with Mexican Oak Species

  • Guevara-Guerrero, Gonzalo;Pacioni, Giovanni;Leonardi, Marco;Ocanas, Fortunato Garza;Hernandez, Rigoberto Gaitan
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.1
    • /
    • pp.40-50
    • /
    • 2022
  • The Périgord black truffle (Tuber melanosporum) is an edible fungus and among the most expensive foods worldwide. It is the basis of a multimillion-dollar bio-business. Truffle farming does not exist in Mexico, and no formal studies have been conducted on its culture. This report describes the mycorrhizal synthesis (i.e., artificial union of fungus with host) of T. melanosporum with oak species native to Mexico (Quercus polymorpha, Q. fusiformis, and Q. canbyi). The mycorrhizal association was successful in Q. polymorpha and Q. fusiformis, as confirmed morphologically and using T. melanosporum molecular primers (ITSML/ITS4LNG). The effect of the ectomycorrhizal fungus on host growth (stem diameter) was statistically significant. Illustrations of the study are presented.

Mycorrhizal Formations and Seedling Growth of Pinus desiflora by in vitro Synthesis with the Inoculation of Ectomycorrhizal Fungi

  • Chung, Hung-Chae;Kim, Dong-Hun;Lee, Sang-Sun
    • Mycobiology
    • /
    • v.30 no.2
    • /
    • pp.70-75
    • /
    • 2002
  • The mycelia were directly isolated from eight species of fungal basidiocarps, confirmed to the ectomycorrhiza in the roots from the fields(forestry); Suillus bovinus, Paxillus involutus, Lactarius hysginus, Russula fragilis, Lepista nuda, Lyophyllum shimeji, Tricholoma matsutake, and Russula integra. The mycelia were pure-cultured with several transferring in various agars, and inoculated to the roots of pine(Pinus densiflora) seedling by in vitro method. After ten months growth under artificially aseptic conditions, all pine seedlings inoculated were stimulated at the growth-height, whereas those not inoculated were nearly dead. Also, the ramifications of ectomycorrhizal pine roots formed in the synthetic in vitro systems and were various according to the different mycelia. Synthesis of ectomycorrhiza were clearly confirmed in ten months growth, but not distinguished at this moment. It was clearly proved that the mycelia isolated caused the ectomycorrhizae in the roots of pine seedlings.

Tuber borchii Shapes the Ectomycorrhizosphere Microbial Communities of Corylus avellana

  • Li, Xiaolin;Zhang, Xiaoping;Yang, Mei;Yan, Lijuan;Kang, Zongjing;Xiao, Yujun;Tang, Ping;Ye, Lei;Zhang, Bo;Zou, Jie;Liu, Chengyi
    • Mycobiology
    • /
    • v.47 no.2
    • /
    • pp.180-190
    • /
    • 2019
  • In this study, eight-month-old ectomycorrhizae of Tuber borchii with Corylus avellana were synthesized to explore the influence of T. borchii colonization on the soil properties and the microbial communities associated with C. avellana during the early symbiotic stage. The results showed that the bacterial richness and diversity in the ectomycorrhizae were significantly higher than those in the control roots, whereas the fungal diversity was not changed in response to T. borchii colonization. Tuber was the dominant taxon (82.97%) in ectomycorrhizae. Some pathogenic fungi, including Ilyonectria and Podospora, and other competitive mycorrhizal fungi, such as Hymenochaete, had significantly lower abundance in the T. borchii inoculation treatment. It was found that the ectomycorrhizae of C. avellana contained some more abundant bacterial genera (e.g., Rhizobium, Pedomicrobium, Ilumatobacter, Streptomyces, and Geobacillus) and fungal genera (e.g., Trechispora and Humicola) than the control roots. The properties of rhizosphere soils were also changed by T. borchii colonization, like available nitrogen, available phosphorus and exchangeable magnesium, which indicated a feedback effect of mycorrhizal synthesis on soil properties. Overall, this work highlighted the interactions between the symbionts and the microbes present in the host, which shed light on our understanding of the ecological functions of T. borchii and facilitate its commercial cultivation.

Influence of Ectomycorrhizal Colonization on Cesium Uptake by Pinus densiflora Seedlings

  • Ogo, Sumika;Yamanaka, Takashi;Akama, Keiko;Nagakura, Junko;Yamaji, Keiko
    • Mycobiology
    • /
    • v.46 no.4
    • /
    • pp.388-395
    • /
    • 2018
  • Radionuclides were deposited at forest areas in eastern parts of Japan following the Fukushima Daiichi Nuclear Power Plant incident in March 2011. Ectomycorrhizal (EM) fungi have important effects on radiocaesium dynamics in forest ecosystems. We examined the effect of colonization by the EM fungus Astraeus hygrometricus on the uptake of cesium (Cs) and potassium (K) by Pinus densiflora seedlings. Pine seedlings exhibited enhanced growth after the EM formation due to the colonization by A. hygrometricus. Additionally, the shoot Cs concentration increased after the EM formation when Cs was not added to the medium. This suggests that A. hygrometricus might be able to solubilize Cs fixed to soil particles. Moreover, the shoot K concentration increased significantly after the EM formation when Cs was added. However, there were no significant differences in the root K concentration between EM and non-EM seedlings. These results suggest that different mechanisms control the transfer of Cs and K from the root to the shoot of pine seedlings.

Mycorrhizae Effects on N Uptake and Assimilation Estimated by 15N Tracing in White Clover under Water-Stressed Conditions (15N 추적에 의한 화이트 클로버에서 마이코라이자 접종이 수분 스트레스 조건하에서 질소 흡수 및 동화의 평가)

  • Zhang, Qian;Park, Sang-Hyun;Kim, Tae-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.31 no.3
    • /
    • pp.277-284
    • /
    • 2011
  • To investigate the effects of arbuscular mycorrhizal (AM) symbiosis on N uptake and its assimilation under drought-stressed conditions in white clover, total $^{15}N$ amount and $^{15}N$ amount incorporated into $NO_3^-$, amino acids and soluble proteins were quantified by $^{15}N$ tracing during 7 days of water treatment. Under well-watered conditions, there were no significant effects of AM symbiosis on all parameters analyzed in this study. Drought stress decreased total $^{15}N$ amount both in AM and non-AM plants, with a lower rate in AM plants (-13.8%) relative to non-AM plants (-28.5%) at day 7. Drought significantly increased $^{15}N-NO_3^-$ amount in non-AM plants. The amount of $^{15}N$-amino acids was 1.26-fold and 1.33-fold higher, respectively, in leaves and roots of AM plants compared to those of non-AM ones. Drought decreased the amount of $^{15}N$-soluble proteins in leaves at day 7, with a higher rate in non-AM plants than in AM ones. These results clearly indicate that AM colonization effectively alleviating the decrease in N uptake, amino acids and proteins synthesis caused by drought stress.