• Title/Summary/Keyword: mycology

Search Result 3,315, Processing Time 0.024 seconds

Changes in Sporophore Appearance of Cultivated Mushroom, Agaricus bisporus, during the Harvesting Period (양송이 자실체(子實體) 발생(發生)의 경시적(經時的) 변동(變動)에 관한 연구(硏究))

  • Park, Jong-Seong;Shin, Gwan-Chul
    • Korean Journal of Agricultural Science
    • /
    • v.4 no.1
    • /
    • pp.43-50
    • /
    • 1977
  • This stuy was conducted to analyse the variation in occurrance of fruit body of Agaricus bisporus (Lange) Sing, depending on difference of cultivation and harvesting method and to find out a method for early predicting the mushroom yield potential at the base of results of the analysis. The results obtained were as follows ; 1. Total mushroom yield was highly correlated with picking amount of fruit bodies during first 30 days of picking period, and yield potentiality in the certain high yielding mushroom house was markedly affected with the yield of middle and late period of picking. 2. Variation of mushroom yield with varying the degree of maturity of fruit bodies appeared to be different between spring and autumn cropping : in case autumn cropping was usally undertaken with normal cropping scheme, mushroom yield showed a reduction in early period of picking but an increase in late period when the mushrooms where picked at pre-matured stage. 3. When the picking rate of button form was laid in the range of 20~45%, and increase of total mushroom yield was accompanied by an increasing tendency of picking rate of button form. 4. Cropping results from mushroom houses could be early predicted from the regression equations, which was based on the analysis of variation in fruit body occurance throughout the picking period.

  • PDF

Prevalence of Nosema and Virus in Honey Bee (Apis mellifera L.) Colonies on Flowering Period of Acacia in Korea

  • Hong, In-Pyo;Woo, Soon-Ok;Choi, Yong-Soo;Han, Sang-Mi;Kim, Nam-Suk;Kim, Hye-Kyung;Han, Sang-Hoon;Lee, Man-Young;Lee, Myeong-Lyeol;Byeon, Kyu-Ho
    • Mycobiology
    • /
    • v.39 no.4
    • /
    • pp.317-320
    • /
    • 2011
  • Honey production from approximately 1.6 million colonies owned by about 199,000 Korean beekeepers was almost 23,000 metric tons in 2009. Nosema causes significant losses in honey production and the virus decreases population size. We initiated a survey of honey bee colonies on the blooming period of Acacia to determine the prevalence of Nosema and virus in 2011. Most Korean beekeepers have moved from the south to north of Korea to get Acacia nectar for 2 mon. This provided a valuable opportunity to sample bees originating from diverse areas in one location. Twenty hives owned by 18 beekeepers were sampled in this year. Nosema spore counts ranged from zero to 1,710,000 spores per bee. The average number of nosema spores per bee was 580,000. Approximately 95% of the colonies were infected with Nosema, based on the presence of spores in the flowering period of Acacia. This indicates that Nosema is the predominant species affecting honeybee colonies. Also, the seven most important honeybee viruses were investigated by reverse transcription-PCR. Among them, four different viruses were detected in samples. Black queen cell virus was present in all samples. Chronic bee paralysis virus was detected in 10% of samples. Deformed wing virus was present in only 5% of the samples. Prevalence of Sacbrood virus was 15%. However, Cloudy wing virus, Israel acute paralysis virus and kashmir bee virus were not detected in any of samples.

Interaction between the Rice Pathogens, Fusarium graminearum and Burkholderia glumae

  • Lee, Jungkwan;Jung, Boknam;Park, Jungwook;Kim, Sungyoung;Youn, Kihun;Seo, Young-Su
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.13-13
    • /
    • 2014
  • Species belonging to the genus Fusarium are widely distributed and cause diseases in many plants. Isolation of fungal strains from air or cereals is necessary for disease forecasting, disease diagnosis, and population genetics [1]. Previously we showed that Fusarium species are resistant to toxoflavin produced by the bacterial rice pathogen Burkholderia glumae while other fungal genera are sensitive to the toxin, resulting in the development of a selective medium for Fusarium species using toxoflavin [2]. In this study, we have tried to elucidate the resistant mechanism of F. graminearum against toxoflavin and interaction between the two pathogens in nature. To test whether B. glumae affects the development of F. graminearum, the wild-type F. graminearum strains were incubated with either the bacterial strain or supernatant of the bacterial culture. Both conditions increased the conidial production five times more than when the fungus was incubated alone. While co-incubation resulted in dramatic increase of conidial production, conidia germination delayed by either the bacterial strain or supernatant. These results suggest that certain factors produced by B. glumae induce conidial production and delay conidial germination in F. graminearum. To identify genes related to toxoflavin resistance in F. graminearum, we screened the transcriptional factor mutant library previously generated in F. graminearum [3] and identified one mutant that is sensitive to toxoflavin. We analyzed transcriptomes of the wild-type strain and the mutant strain under either absence or presence of toxoflavin through RNAseq. Expression level of total genes of 13,820 was measured by reads per kilobase per million mapped reads (RPKM). Under the criteria with more than two-fold changes, 1,440 genes were upregulated and 1,267 genes were down-regulated in wild-type strain than mutant strain in response to toxoflavin treatment. A comparison of gene expression profiling between the wild type and mutant through gene ontology analysis showed that genes related to metabolic process and oxidation-reduction process were highly enriched in the mutant strain. The data analyses will focus on elucidating the resistance mechanism of F. graminearum against toxoflavin and the interaction between the two pathogens in rice. Further evolutionary history will be traced through figuring out the gene function in populations and in other filamentous fungi.

  • PDF

Epigenetic Regulation of Fungal Development and Pathogenesis in the Rice Blast Fungus

  • Jeon, Junhyun
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.11-11
    • /
    • 2014
  • Fungal pathogens have huge impact on health and economic wellbeing of human by causing life-threatening mycoses in immune-compromised patients or by destroying crop plants. A key determinant of fungal pathogenesis is their ability to undergo developmental change in response to host or environmental factors. Genetic pathways that regulate such morphological transitions and adaptation are therefore extensively studied during the last few decades. Given that epigenetic as well as genetic components play pivotal roles in development of plants and mammals, contribution of microbial epigenetic counterparts to this morphogenetic process is intriguing yet nearly unappreciated question to date. To bridge this gap in our knowledge, we set out to investigate histone modifications among epigenetic mechanisms that possibly regulate fungal adaptation and processes involved in pathogenesis of a model plant pathogenic fungus, Magnaporthe oryzae. M. oryzae is a causal agent of rice blast disease, which destroys 10 to 30% of the rice crop annually. Since the rice is the staple food for more than half of human population, the disease is a major threat to global food security. In addition to the socioeconomic impact of the disease it causes, the fungus is genetically tractable and can undergo well-defined morphological transitions including asexual spore production and appressorium (a specialized infection structure) formation in vitro, making it a model to study fungal development and pathogenicity. For functional and comparative analysis of histone modifications, a web-based database (dbHiMo) was constructed to archive and analyze histone modifying enzymes from eukaryotic species whose genome sequences are available. Histone modifying enzymes were identified applying a search pipeline built upon profile hidden Markov model (HMM) to proteomes. The database incorporates 22,169 histone-modifying enzymes identified from 342 species including 214 fungal, 33 plants, and 77 metazoan species. The dbHiMo provides users with web-based personalized data browsing and analysis tools, supporting comparative and evolutionary genomics. Based on the database entries, functional analysis of genes encoding histone acetyltransferases and histone demethylases is under way. Here I provide examples of such analyses that show how histone acetylation and methylation is implicated in regulating important aspects of fungal pathogenesis. Current analysis of histone modifying enzymes will be followed by ChIP-Seq and RNA-seq experiments to pinpoint the genes that are controlled by particular histone modifications. We anticipate that our work will provide not only the significant advances in our understanding of epigenetic mechanisms operating in microbial eukaryotes but also basis to expand our perspective on regulation of development in fungal pathogens.

  • PDF

Genetic Control of Asexual Sporulation in Fusarium graminearum

  • Son, Hokyoung;Kim, Myung-Gu;Chae, Suhn-Kee;Lee, Yin-Won
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.15-15
    • /
    • 2014
  • Fusarium graminearum (teleomorph Gibberella zeae) is an important plant pathogen that causes head blight of major cereal crops such as wheat, barley, and rice, as well as causing ear and stalk rot on maize worldwide. Plant diseases caused by this fungus lead to severe yield losses and accumulation of harmful mycotoxins in infected cereals [1]. Fungi utilize spore production as a mean to rapidly avoid unfavorable environmental conditions and to amplify their population. Spores are produced sexually and asexually and their production is precisely controlled. Upstream developmental activators consist of fluffy genes have been known to orchestrate early induction of condiogenesis in a model filamentous fungus Aspergillus nidulans. To understand the molecular mechanisms underlying conidiogenesis in F. graminearum, we characterized functions of the F. graminearum fluffy gene homologs [2]. We found that FlbD is conserved regulatory function for conidiogenesis in both A. nidulans and F. graminearum among five fluffy gene homologs. flbD deletion abolished conidia and perithecia production, suggesting that FlbD have global roles in hyphal differentiation processes in F. graminearum. We further identified and functionally characterized the ortholog of AbaA, which is involved in differentiation from vegetative hyphae to conidia and known to be absent in F. graminearum [3]. Deletion of abaA did not affect vegetative growth, sexual development, or virulence, but conidium production was completely abolished and thin hyphae grew from abnormally shaped phialides in abaA deletion mutants. Overexpression of abaA resulted in pleiotropic defects such as impaired sexual and asexual development, retarded conidium germination, and reduced trichothecene production. AbaA localized to the nuclei of phialides and terminal cells of mature conidia. Successful interspecies complementation using A. nidulans AbaA and the conserved AbaA-WetA pathway demonstrated that the molecular mechanisms responsible for AbaA activity are conserved in F. graminearum as they are in A. nidulans. F. graminearum ortholog of Aspergillus nidulans wetA has been shown to be involved in conidiogenesis and conidium maturation [4]. Deletion of F. graminearum wetA did not alter mycelial growth, sexual development, or virulence, but the wetA deletion mutants produced longer conidia with fewer septa, and the conidia were sensitive to acute stresses, such as oxidative stress and heat stress. Furthermore, the survival rate of aged conidia from the F. graminearum wetA deletion mutants was reduced. The wetA deletion resulted in vigorous generation of single-celled conidia through autophagy-dependent microcycle conidiation, indicating that WetA functions to maintain conidia dormancy by suppressing microcycle conidiation in F. graminearum. In A. nidulans, FlbB physically interacts with FlbD and FlbE, and the resulting FlbB/FlbE and FlbB/FlbD complexes induce the expression of flbD and brlA, respectively. BrlA is an activator of the AbaA-WetA pathway. AbaA and WetA are required for phialide formation and conidia maturation, respectively [5]. In F. graminearum, the AbaA-WetA pathway is similar to that of A. nidulans, except a brlA ortholog does not exist. Amongst the fluffy genes, only fgflbD has a conserved role for regulation of the AbaA-WetA pathway.

  • PDF

Morphological and Genetic Characteristics of Colletotrichum gloeosporioides Isolated from Newly Emerging Static-Symptom Anthracnose in Apple

  • Jeon, Yongho;Cheon, Wonsu
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.34-34
    • /
    • 2014
  • Filamentous fungi of the genus Colletotrichum (teleomorph, Glomerella) are considered major plant pathogens worldwide. Cereals, legumes, vegetables, and fruit trees may be seriously affected by this pathogen (1). Colletotrichum species cause typical disease symptoms known as anthracnoses, characterized by sunken necrotic tissue, where orange conidial masses are produced. Anthracnose appears in both developing and mature plant tissues (2). We investigated disease occurrence in apple orchards from 2013 to 2014 in northern Gyeongbuk province, Korea. Typical anthracnose with advanced symptoms was observed in all apple orchards studied. Of late, static fruit spot symptoms are being observed in apple orchards. A small lesion, which does not expand further and remains static until the harvesting season, is observed at the beginning of fruit growth period. In our study, static symptoms, together with the typical symptoms, were observed on apples. The isolated fungus was tested for pathogenicity on cv. 'Fuji apple' (fully ripe fruits, unripe fruits, and cross-section of fruits) by inoculating the fruits with a conidial suspension ($10^5$ conidia/ml). In apple inoculated with typical anthracnose fungus, the anthracnose symptoms progressed, and dark lesions with salmon-colored masses of conidia were observed on fruit, which were also soft and sunken. However, in apple inoculated with fungi causing static symptoms, the size of the spots did not increase. Interestingly, the shape and size of the conidia and the shape of the appressoria of both types of fungi were found to be similar. The conidia of the two types of fungi were straight and cylindrical, with an obtuse apex. The culture and morphological characteristics of the conidia were similar to those of C. gloeosporioides (5). The conidia of C. gloeosporioides germinate and form appressoria in response to chemical signals such as host surface wax and the fruitripening hormone ethylene (3). In this study, the spores started to germinate 4 h after incubation with an ethephon suspension. Then, the germ tubes began to swell, and subsequently, differentiation into appressoria with dark thick walls was completed by 8 h. In advanced symptoms, fungal spores of virtually all the appressoria formed primary hyphae within 16 h. However, in the static-symptom fungus spores, no primary hyphae formed by 16 h. The two types of isolates exhibited different growth rates on medium containing apple pectin, Na polypectate, or glucose as the sole carbon. Static-symptom fungi had a >10% reduction in growth (apple pectin, 14.9%; Na polypectate, 27.7%; glucose, 10.4%). The fungal isolates were also genetically characterized by sequencing. ITS regions of rDNA, chitin synthase 1 (CHS1), actin (ACT), and ${\beta}$-tubulin (${\beta}t$) were amplified from isolates using primer pairs ITS 1 and ITS 4 (4), CHS-79F and CHS-354R, ACT-512F and ACT-783R, and T1 and ${\beta}t2$ (5), respectively. The resulting sequences showed 100% identity with sequences of C. gloeosporioides at KC493156, and the sequence of the ${\beta}$t gene showed 100% identity with C. gloeosporioides at JX009557.1. Therefore, sequence data from the four loci studied proves that the isolated pathogen is C. gloeosporioides. We also performed random amplified polymorphic DNA-PCR, which showed clearly differentiated subgroups of C. gloeosporioides genotypes. The clustering of these groups was highly related to the symptom types of the individual strains.

  • PDF

Chemosensitization of Fusarium graminearum to Chemical Fungicides Using Cyclic Lipopeptides Produced by Bacillus amyloliquefaciens Strain JCK-12

  • Kim, K.;Lee, Y.;Ha, A.;Kim, Ji-In;Park, A.R.;Yu, N.H.;Son, H.;Choi, G.J.;Park, H.W.;Lee, C.W.;Lee, T.;Lee, Y.W.;Kim, J.C.
    • 한국균학회소식:학술대회논문집
    • /
    • 2018.05a
    • /
    • pp.44-44
    • /
    • 2018
  • Fusarium head blight (FHB) caused by infection with Fusarium graminearum leads to enormous losses to crop growers, and may contaminate grains with a number of Fusarium mycotoxins that pose serious risks to human and animal health. Antagonistic bacteria that are used to prevent FHB offer attractive alternatives or supplements to synthetic fungicides for controlling FHB without the negative effects of chemical management. Out of 500 bacterial strains isolated from soil, Bacillus amyloliquefaciens JCK-12 showed strong antifungal activity and was considered a potential source for control strategies to reduce FHB. B. amyloliquefaciens JCK-12 produces several cyclic lipopeptides (CLPs) including iturin A, fengycin, and surfactin. Iturin A inhibits spore germination of F. graminearum. Fengycin or surfactin alone did not display any inhibitory activity against spore germination at concentrations less than 30 ug/ml, but a mixture of iturin A, fengycin, and surfactin showed a remarkable synergistic inhibitory effect on F. graminearum spore germination. The fermentation broth and formulation of B. amyloliquefaciens JCK-12 strain reduced the disease incidence of FHB in wheat. Furthermore, co-application of B. amyloliquefaciens JCK-12 and chemical fungicides resulted in synergistic in vitro antifungal effects and significant disease control efficacy against FHB under greenhouse and field conditions, suggesting that B. amyloliquefaciens JCK-12 has a strong chemosensitizing effect. The synergistic antifungal effect of B. amyloliquefaciens JCK-12 and chemical fungicides in combination may result from the cell wall damage and altered cell membrane permeability in the phytopathogenic fungi caused by the CLP mixtures and subsequent increased sensitivity of F. graminearum to fungicides. In addition, B. amyloliquefaciens JCK-12 showed the potential to reduce trichothecenes mycotoxin production. The results of this study indicate that B. amyloliquefaciens JCK-12 could be used as an available biocontrol agent or as a chemosensitizer to chemical fungicides for controlling FHB disease and as a strategy for preventing the contamination of harvested crops with mycotoxins.

  • PDF

Alternaria mycotoxins and its incidence in fruits and vegetables

  • Patriarca, Andrea
    • 한국균학회소식:학술대회논문집
    • /
    • 2018.05a
    • /
    • pp.13-13
    • /
    • 2018
  • Alternaria is a ubiquitous fungal genus, widely distributed in the environment and a range of different habitats. It includes both plant pathogenic and saprophytic species, which can affect crops in the field or cause post-harvest spoilage of plant fruits and kernels. Numerous Alternaria species cause damage to agricultural products including cereal grains, fruits and vegetables, and are responsible for severe economic losses worldwide. Most Alternaria species have the ability to produce a variety of secondary metabolites, which may play important roles in plant pathology as well as food quality and safety. Alternariol (AOH), alternariol monomethyl ether (AME), tenuazonic acid (TeA), tentoxin (TEN) and altenuene (ALT) are considered the main Alternaria compounds thought to pose a risk to human health. However, food-borne Alternaria species are able to produce many additional metabolites, whose toxicity has been tested incompletely or not tested at all. Both alternariols are mutagenic and their presence in cereal grain has been associated with high levels of human esophageal cancer in China. TeA exerts cytotoxic and phytotoxic properties, and is acutely toxic in different animal species, causing hemorrhages in several organs. The possible involvement of TA in the etiology of onyalai, a human hematological disorder occurring in Africa, has been suggested. Altertoxins (ALXs) have been found to be more potent mutagens and acutely toxic to mice than AOH and AME. Other metabolites, such as TEN, are reported to be phytotoxins, and their toxicity on animals has not been demonstrated up to now. Vegetable foods infected by Alternaria rot are obviously not suitable for consumption. Thus, whole fresh fruits are not believed to contribute significantly with Alternaria toxins to human exposure. However, processed vegetable products may introduce considerable amounts of these toxins to the human diet if decayed or moldy fruit is not removed before processing. The taxonomy of the genus is not well defined yet, which makes it difficult to establish an accurate relationship between the contaminant species and their associated mycotoxins. Great efforts have been made to organize taxa into subgeneric taxonomic levels, especially for the small-spored, food associated species, which are closely related and constitute the most relevant food pathogens from this genus. Several crops of agricultural value are susceptible to infection by different Alternaria species and can contribute to the entry of Alternaria mycotoxins in the food chain. The distribution of Alternaria species was studied in different commodities grown in Argentina. These food populations were characterized through a polyphasic approach, with special interest in their secondary metabolite profiles, to understand their full chemical potential. Alternaria species associated with tomato, bell pepper, blueberry, apples and wheat cultivated in Argentina showed a surprisingly high metabolomic and mycotoxigenic potential. The natural occurrence of Alternaria toxins in these foods was also investigated. The results here presented will provide background for discussion on regulations for Alternaria toxins in foods.

  • PDF

Seed-borne Pathogenic Bacterium Interact with Air-borne Plant Pathogenic Fungus in Rice Fields

  • Jung, Boknam;Park, Jungwook;Kim, Namgyu;Li, Taiying;Kim, Soyeon;Bartley, Laura E.;Kim, Jinnyun;Kim, Inyoung;Kang, Yoonhee;Yun, Ki-Hoon;Choi, Younghae;Lee, Hyun-Hee;Lee, Kwang Sik;Kim, Bo Yeon;Shon, Jong Cheol;Kim, Won Cheol;Liu, Kwang-Hyeon;Yoon, Dahye;Kim, Suhkman;Ji, Sungyeon;Seo, Young Su;Lee, Jungkwan
    • 한국균학회소식:학술대회논문집
    • /
    • 2018.05a
    • /
    • pp.33-33
    • /
    • 2018
  • Air-borne plant pathogenic fungus Fusarium graminearum and seed-borne plant pathogenic bacterium Burkholderia glumae are cause similar disease symptoms in rice heads. Here we showed that two pathogens frequently co-isolated in rice heads and F. graminearum is resistant to toxoflavin produced by B. glumae while other fungal genera are sensitive to the toxin. We have tried to clarify the resistant mechanism of F. graminearum against toxoflavin and the ecological reason of co-existence of the two pathogens in rice. We found that F. graminearum carries resistance to toxoflavin as accumulating lipid in fungal cells. Co-cultivation of two pathogens resulted in increased conidia and enhanced chemical attraction and attachment of the bacterial cells to the fungal conidia. Bacteria physically attached to fungal conidia, which protected bacterium cells from UV light and allowed disease dispersal. Chemotaxis analysis showed that bacterial cells moved toward the fungal exudation compared to a control. Even enhanced the production of phytotoxic trichothecene by the fungal under presence of toxoflavin and disease severity on rice heads was significantly increased by co-inoculation rather than single inoculation. This study suggested that the undisclosed potentiality of air-born infection of bacteria using the fungal spores for survival and dispersal.

  • PDF

Influence of Temperature on the Bacterial Community in Substrate and Extracellular Enzyme Activity of Auricularia cornea

  • Zhang, Xiaoping;Zhang, Bo;Miao, Renyun;Zhou, Jie;Ye, Lei;Jia, Dinghong;Peng, Weihong;Yan, Lijuan;Zhang, Xiaoping;Tan, Wei;Li, Xiaolin
    • Mycobiology
    • /
    • v.46 no.3
    • /
    • pp.224-235
    • /
    • 2018
  • Temperature is an important environmental factor that can greatly influence the cultivation of Auricularia cornea. In this study, lignin peroxidase, laccase, manganese peroxidase, and cellulose in A. cornea fruiting bodies were tested under five different temperatures ($20^{\circ}C$, $25^{\circ}C$, $30^{\circ}C$, $35^{\circ}C$, and $40^{\circ}C$) in three different culture periods (10 days, 20 days and 30 days). In addition, the V4 region of bacterial 16S rRNA genes in the substrate of A. cornea cultivated for 30 days at different temperatures were sequenced using next-generation sequencing technology to explore the structure and diversity of bacterial communities in the substrate. Temperature and culture days had a significant effect on the activities of the four enzymes, and changes in activity were not synchronized with changes in temperature and culture days. Overall, we obtained 487,694 sequences from 15 samples and assigned them to 16 bacterial phyla. Bacterial community composition and structure in the substrate changed when the temperature was above $35^{\circ}C$. The relative abundances of some bacteria were significantly affected by temperature. A total of 35 genera at five temperatures in the substrate were correlated, and 41 functional pathways were predicted in the study. Bacterial genes associated with the membrane transport pathway had the highest average abundance (16.16%), and this increased at $35^{\circ}C$ and $40^{\circ}C$. Generally, different temperatures had impacts on the physiological activity of A. cornea and the bacterial community in the substrate; therefore, the data presented herein should facilitate cultivation of A. cornea.