• Title/Summary/Keyword: mycoherbicide

Search Result 15, Processing Time 0.027 seconds

Biological Control of Some Serious Weeds in Dakahlia District. II. Mycoherbicial Production and Physiological Host Responses

  • Abdel-Fattah, Gamal M.
    • Mycobiology
    • /
    • v.30 no.2
    • /
    • pp.96-101
    • /
    • 2002
  • Four pathogenic fungal isolates belonging to different genera including Alternaria, Fusarium and Curvularia were isolated from selected diseased weeds growing in the fields in Dakahalia district. The inoculum of these pathogenic fungi specific to weeds were cultured, standardized and formulated as alginate pellets containing mycelium plus culture filtrate. These mycoherbicides were evaluated for disease severity(DS). Maximum DS was obtained with the alginate pellets of mycelium filtrate Fusarium solani. Physiological changes of the treated weed were determined 5 aiid 10 days after treatments. As compared to the healthy weeds, all mycoherbicide formulations significantly decreased the amount of photosynthetic pigments and subsequently soluble and insoluble sugars in the infected weeds. The mycoherbicide formulation of F. solani had the greatest effect on lowering to the abovementioned amount in the leaves of Chenopodium murale. Generally, treatment of weed leaves with the specific mycoherbicide led to a highly significant increase in total phenol content when compared to the healthy control weed. C. murale infected with the mycoherbicide formulation of F. solani had higher levels of phenolic compounds than those other treated weeds particularly after 10 days of inoculation.

Anthracnose of Rumex crispus Caused by Colletotricum gloeosporioides (Colletotricum gloeosporioides에 의한 소리쟁이 탄저병)

  • 김병섭;조광연;이윤수
    • Korean Journal Plant Pathology
    • /
    • v.14 no.4
    • /
    • pp.358-360
    • /
    • 1998
  • An anthracnose of Rumex crispus was endemic in wet area around a fruit garden of Taejon in Korea. A fungal pathogen was repeatedly isolated from the leaf spot lesions of the weed plant and identified as Colletotrichum gloeosporioides. The plant was controlled completely by fungal inoculation with 5$\times$105 conidia/ml. The fungus has potential to be developed as a mycoherbicide for weed control.

  • PDF

Factors Affecting Sporulation of a Mycoherbicide, Epicoccosorus nematosporus, on the Lesion of Eleocharis kuroguwai

  • Hong, Yeon-Kyu;Hyun, Jong-Nae;Cho, Jae-Min;Uhm, Jae-Youl;Kim, Soon-Chul
    • The Plant Pathology Journal
    • /
    • v.18 no.2
    • /
    • pp.81-84
    • /
    • 2002
  • Effects of temperature and dew period on sporulation of a mycoherbicide, Epicoccosorus nematosporus, on the lesion of its host, Eleocharis kuroguwai were determined. Conidia formation was first observed after 10 days on plants incubated for either 12 or 16 h in a dew chamber at 28$^{\circ}C$; 16 h dew period resulted in more conidia formation. As the dew period was decreased to less than 8 h, fewer conidia formed. Conidial production was most abundant at 28$^{\circ}C$ and produced as much as 3.3$\times$10$^4$conidia per lesion, while 0.1$\times$10$^3$and 2.3$\times$10$^3$conidia per lesion were produced at 16$^{\circ}C$ and 36$^{\circ}C$, respectively. Alternating temperature regimes, i.e., 30/15, 30/20, 28/20, and 28/15$^{\circ}C$ (day/night) were much better than constant temperature, i.e., 30/30, 28/28/, and 20/2$0^{\circ}C$ for sporulation. In the second sporulation, there were as much as 3.1$\times$10$^4$conidia per lesion (ca. <50% of the first sporulation). Then, sporulation dropped sharply to 6.2$\times$10$^2$conidia per lesion in the third sporulation. Results of this study suggest that temperature combined with dew period is the primary limiting factor in the use of E. nematosporus as a mycoherbicide off, kuroguwai.

Nimbya scirpicola Causing Brown Spot of Bayonet-Gras (Scirpus maritimus) (매자기에 갈색무늬병(가칭)을 일으키는 Nimbya scirpicola)

  • 유승헌;윤해근;심형권
    • Korean Journal Plant Pathology
    • /
    • v.10 no.1
    • /
    • pp.61-63
    • /
    • 1994
  • A brown leaf and stem spot disease of bayonet-grass (Scirpus maritimus) was epidemic in reclaimed paddy fields of Chunbuk province, Korea. A fungal pathogen was repeatedly isolated from the necrotic lesions of the bayonet-grass and identified as Nimbya scirpicola. The pathogen induced disease symptoms only in bayonet-grass but not in 8 other plants tested; Brassica pathogen induced disease symptoms only in bayonet-grass but not in 8 other plants tested; Brassica compestris subsp. napus var. pekinensis, Cucumis sativus, Glycine max, Hordeum vulgare, Lycopersicon esculentum, Oryza sativa, Sesamum indicum and Triticum aestivum. The fungus has potential to be developed as a mycoherbicide.

  • PDF

Weed Management Technology with Host Specific of Biological Control Agents (기주특이성 잡초 활성 미생물을 이용한 잡초방제 기술)

  • Hong, Yeon-Kyu;Lee, Bong-Choon;Song, Seok-Bo;Park, Sung-Tae;Kim, Jeong-Nam;Geon, Min-Goo;Kim, In-Seob
    • Asian Journal of Turfgrass Science
    • /
    • v.20 no.2
    • /
    • pp.175-190
    • /
    • 2006
  • The term mycoherbicide started in 1970, but its interest heightened due to increase costs of chemical herbicides. A classical biocontrol agent is expected to become a permanent part of its new environment and do no harm to it. Contemporary biological control agent(BCA) must be produced by artificial culture and could be applied like chemical herbicides over weeds. BCA is different from the classical approach in that it released through natural spread. To date 26 species of fungi are used as classical BCA against 26 species of weeds in seven countries. There are a number of examples of pathogens attacking non-target plants. But through risk assessments which include understanding the taxonomy, biology and ecology, the target and non-target species, it will be safe to introduce of exotic pathogens to control weeds. But pathogens have not been successfully used in practice. Many mycoherbicides show potential in laboratories, but are ineffective in the field and not consistent from year to year or field to field. There is also a lack of understanding humidity, dew formation and temperature and their effects on suppression of weeds by plant pathogens. Potential pathogen must be selected as a BCA. Previous studies suggest that these pathogens must (1) produce abundant and durable inoculum in artifical culture, (2) be genetically stable and weed specific and (3) kill weeds in control. A granular preparation of mycoherbicide into sodium alginate is lighter than liquids and less bulky than organic matter. Gel forms have also been used.

Production of mass microorganisms by using simple liquid culture facility to fit the field scale test.

  • Hong, Yeon-Kyu;Jung, Won-Kwon;Song, Seok-Bo;Hyun, Jong-Nae;Park, Sung-Tae;Kim, Soon-Chul
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.107.1-107
    • /
    • 2003
  • The fermentation process and subsequent processing determine the efficacy of a bioherbicide propagule. Large batches of biomass of the mycoherbicide agent for white clover, Sclerotium sp.(BWC98-105) was produced in simple liquid fermentator in 5 gallons vessels(Model No. 8087, Dabo Inc., Korea) with oxygen supply(DPH16000, FineTech Inc., Korea) simulating industrial conditions by utilizing commercially available, inexpensive ingredients (10 % rice bran), The maximum biomass yield of Sclerotium sp.(BWC98-105) was obtained after 5 days of air pumped incubation at room temperature condition(22-28$^{\circ}C$). By using this simple facility, it could get fragmented or proliferated greatly and attained maximum mycelia biomass. The biomass of mycoherbicide agent consisted of hyphae devoid of spores. Biomass mycelia of the fungus 99% survival at room temperature after 2 me. A thorough understanding of the effects of fermentation and formulation on viability and virulence is required to guide these processes. After an economical yield level of bioherbicide propagule has been achieved in a fermentation process, formulation becomes a critical factor which influences product efficacy. Because the fermentation must be stopped at a point when virulence/viability are optimum, the live bioherbicide propagule must be stabilized, formulated, and packaged.

  • PDF

Factors Affecting Sporulation, Germination, and Appressoria Formation of Epicoccosorus nematosporus as a Mycoherbicide Under Controlled Environments

  • Hong, Yeon-Kyu;Cho, Jae-Min;Lee, Bong-Choon;Uhm, Jae-Youl;Kim, Soon-Chul
    • The Plant Pathology Journal
    • /
    • v.18 no.1
    • /
    • pp.50-53
    • /
    • 2002
  • To develop Epicoccosorus nematosporus as a mycoherbicide of Eleocharis kuroguwai, the optimum temperature and humidity for sporulation of the pathogen were studied. Conidial production was most abundant at $28^{\circ}C$ with RH 60%, which yielded 661 mg in 9 cm Petri dish. Light intensity of 3,000 up to 7,500 lux was effective in stimulating conidial production of E. nematosporus on oatmeal agar, Light intensity affected sporulation more significantly than temperature. In the pot test, at least 12 h of dew period at $20^{\circ}C$ and $25^{\circ}C$ was required to achieve satisfactory conidial germination and appressorial formation. Few were killed at 8 h of dew period regardless of temperature. Sixteen hours of a single dew treatment immediately after inoculation killed more plants than did two or three repetitive dew treatments of 8-12 h.

Potential of Curvularia sp. DBB2003 as mycoherbicide for monochoria.

  • Kim, Jae-Su;Lee, Han-Young;Jang, Seung-Sik;Chung, Bong-Jin
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.111-111
    • /
    • 2003
  • Several fungal isolates were isolated from diseased monochoria(Monochoria vaginalis, weed of paddy field), which has an resistance to sulfonyl urea(S.U.) herbicide, and were evaluated in the laboratory and greenhouse as potential mycoherbicide. Eight fungi, Alternaria sp., Colletotrichum sp., Curvularia sp., Paenicillium sp and etc. were observed in the isolates. Pathogenicity testing were done on the monochorias in the greenhouse. Monochorias were inoculated with suspensions containing conidia of each isolate at the rates of 1.0 ${\times}$ 10$\^$5/ conidia/ml and 0.1% Tween 80 with hand-gun sprayer. Curvularia sp. and an unidentified fungal isolate caused 90-95% mortality on the monochorias 15∼20 days after inoculation. However the other isolates induced slight symptom of disease on the monochorias. In the early stage of disease development sun-burn appearance was shown at the infected site and the last infected leaves and stems were withered to death. Subsequently the pathogenicity on the rice was evaluated with above two effective isolates. From the test an unidentified isolate showed pathogenicity on the rice but Curvularia sp., named as DBB2003, didn't. Now the mass production and formulation using Curvularia sp. DBB2003 are in progress and the field test will be followed. Combination product with Curvularia sp. DBB2003 and chemical herbicide will be more effect to control the monochoria resisted on S.U. herbicide and need to be further tested.

  • PDF

Isolation and Partial Characterization of Phytotoxic Mycotoxins Produced by Sclerotinia sp., a Potential Bioherbicide for the Control of White Clover(Trifoliorum repens)

  • Hong, Yeon-Kyu;Lee, Bong-Choon;Jung, Won-Kwon;Bae, Soon-Do;Park, Sung-Tae;Uhm, Jae-Youl
    • The Plant Pathology Journal
    • /
    • v.20 no.1
    • /
    • pp.52-57
    • /
    • 2004
  • Sclerotinia sp. (isolate BWC98-105) causes stem blight and root rot in Leghum sp., and is presently being evaluated as a potential mycoherbicide for the control of Trifoliorium repens. Bioassays have shown that Sclerotinia sp. produces phytotoxic substance which is biologically active against T. repens. Two biologically active compounds, designated as compoundsI and II, were produced in vitro from the culture filtrate of BWC98-105 isolate Sclerotium sp. Compounds I and II were purified by means of liquid-liquid extraction and $C_{18}$ open column chromatography (300 ${\times}$ 30 mm, i.d). To determine the purity, the purified compounds were analyzed by RP-HPLC. The analytical RP-HPLC column was a TOSOH ODS-120T (150 ${\times}$ 4.6 mm i.d, Japan), of which the flow rate was set at 0.7 mL/min using the linear gradient solvent system initiated with 15 % methanol to 85 % methanol for 50 min with monitoring at 254 nm. Under these RP-HPLC conditions, compounds I and II eluted at 3.49 and 4.13 min, respectively. Compound II was found to be most potent and host specific. However, compound I had a unique antibiotic activity against phytopathogenic bacteria like bacterial leaf blight (Xanthomonas oryzae) on rice, where it played a less important role in producing toxicity on T. repens. No toxin activity was detected in the water fraction after partitioning with several organic solvents. However, toxin activity was detected in the ethyl acetate and butanol fractions. In the leaf bioassay using compound II, the disease first appeared within 4-5 h as water soaked rot, which subsequently developed into well-defined blight affecting the whole plant.