• Title/Summary/Keyword: mutation program

Search Result 101, Processing Time 0.032 seconds

Genetic and Pathogenic Characterization of Bacterial Wilt Pathogen, Ralstonia pseudosolanacearum (Ralstonia solanacearum Phylotype I), on Roses in Korea

  • Lee, Ingyeong;Kim, Yeong Son;Kim, Jin-Won;Park, Duck Hwan
    • The Plant Pathology Journal
    • /
    • v.36 no.5
    • /
    • pp.440-449
    • /
    • 2020
  • The purpose of this study was to analyze the genetic and pathogenic characteristics of Ralstonia pseudosolanacearum in roses in Korea, and to examine the similarities and differences between Korean isolates and the first-reported European strains. Between 2017 and 2019, seventeen isolates from rose plants were identified as R. pseudosolanacearum using Ralstonia-specific primers. All 17 isolates were identified as race 1 using race-specific primers, and were confirmed as biovar 3 due to their ability to utilize carbon sources. Multiplex PCR using phylotype discriminating specific primers identified the 17 isolates as phylotype I. Sequevar comparison with reference sequevars using the sequences of the egl, mutS, and fliC genes, and only the egl gene, revealed that the strains evaluated in this study corresponded to sequevar I-33. The pathogenicity in roses differed depending on the rose cultivars. The different methods used for the genetic characterization of R. pseudosolanacearum indicate that the 17 rose bacterial wilt isolates had the same genetic characteristics. The lack of genetic variation in these isolates indicates their recent introduction from other countries (likely European countries). Therefore, appropriate quarantine and control measures should be taken in order to avoid further increases in the pathogenicity and/or secondary host range of R. pseudosolanacearum through genetic mutation.

Applications of DNA Microarray in Disease Diagnostics

  • Yoo, Seung-Min;Choi, Jong-Hyun;Lee, Sang-Yup;Yoo, Nae-Choon
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.7
    • /
    • pp.635-646
    • /
    • 2009
  • Rapid and accurate diagnosis of diseases is very important for appropriate treatment of patients. Recent advances in molecular-level interaction and detection technologies are upgrading the clinical diagnostics by providing new ways of diagnosis, with higher speed and accuracy. In particular, DNA microarrays can be efficiently used in clinical diagnostics which span from discovery of diseaserelevant genes to diagnosis using its biomarkers. Diagnostic DNA microarrays have been used for genotyping and determination of disease-relevant genes or agents causing diseases, mutation analysis, screening of single nucleotide polymorphisms (SNPs), detection of chromosome abnormalities, and global determination of posttranslational modification. The performance of DNA-microarray-based diagnosis is continuously improving by the integration of other tools. Thus, DNA microarrays will play a central role in clinical diagnostics and will become a gold standard method for disease diagnosis. In this paper, various applications of DNA microarrays in disease diagnosis are reviewed. Special effort was made to cover the information disclosed in the patents so that recent trends and missing applications can be revealed.

Mutations of katG and inhA in MDR M. tuberculosis (국내에서 분리된 다제 내성 결핵균의 katG 와 inhA 변이 다양성 및 그 빈도)

  • Lin, Hai Hua;Kim, Hee-Youn;Yun, Yeo-Jun;Park, Chan Geun;Kim, Bum-Joon;Park, Young-Gil;Kook, Yoon-Hoh
    • Tuberculosis and Respiratory Diseases
    • /
    • v.63 no.2
    • /
    • pp.128-138
    • /
    • 2007
  • Backgrounds: Mutations of katG and inhA (ORF and promoter) are known to be related to isoniazid (INH) resistance of Mycobacterium tuberculosis. Because reports on these mutations in Korean isolates are limited (i.e. only the frequency of katG codon 463 was evaluated.), we tried to know the kinds of mutations of two genes and their frequencies in INH resistant Korean M. tuberculosis strains. Methods: PCR was performed to amplify katG (2,223 bp), inhA ORF (-77~897, 975 bp), and inhA promoter (-168~80, 248 bp) from 29 multidrug resistant M. tuberculosis (MDR-TB) DNAs prepared by bead beater-phenol method. Their sequences were determined and analyzed by ABI PRISM 3730 XL Analyzer and MegAlign package program, respectively. Results: All of the isolates had more than one mutation in katG or inhA gene. Twenty seven (93%) of 29 tested strains had katG mutations, which suggests that katG is a critical gene determining INH resistance of M. tuberculosis. Amino acid substitutions, such as Arg463Leu and Ser315Thr, due to point mutations of the katG were the most frequent (62.1% and 55.2%) mutations. In addition, deletion of the katG gene was frequently observed (17.2%). Analyzed Korean MDR-TB isolates also had variable inhA mutations. Point mutation of inhA promoter region, such as -15 ($C{\rightarrow}T$) was frequently found. Substitution of amino acid (Lsy8Asn) due to point mutation ($AAA{\rightarrow}AAC$) of inhA ORF was found in 1 isolate. Interestingly, 14 point mutated types that were not previously reported were newly found. While four types resulted in amino acid change, the others were silent mutations. Conclusions: Although it is not clear that the relationship of these newly found mutations with INH resistance, they show marked diversity in Korean MDR-TB strains. It also suggests their feasibility as a molecular target to supplement determining the INH resistance of clinical isolates because of the possible existence of low-level INH resistant strains.

Detection of QTL on Bovine X Chromosome by Exploiting Linkage Disequilibrium

  • Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.5
    • /
    • pp.617-623
    • /
    • 2008
  • A fine-mapping method exploiting linkage disequilibrium was used to detect quantitative trait loci (QTL) on the X chromosome affecting milk production, body conformation and productivity traits. The pedigree comprised 22 paternal half-sib families of Black-and-White Holstein bulls in the Netherlands in a grand-daughter design for a total of 955 sons. Twenty-five microsatellite markers were genotyped to construct a linkage map on the chromosome X spanning 170 Haldane cM with an average inter-marker distance of 7.1 cM. A covariance matrix including elements about identical-by-descent probabilities between haplotypes regarding QTL allele effects was incorporated into the animal model, and a restricted maximum-likelihood method was applied for the presence of QTL using the LDVCM program. Significance thresholds were obtained by permuting haplotypes to phenotypes and by using a false discovery rate procedure. Seven QTL responsible for conformation types (teat length, rump width, rear leg set, angularity and fore udder attachment), behavior (temperament) and a mixture of production and health (durable prestation) were detected at the suggestive level. Some QTL affecting teat length, rump width, durable prestation and rear leg set had small numbers of haplotype clusters, which may indicate good classification of alleles for causal genes or markers that are tightly associated with the causal mutation. However, higher maker density is required to better refine the QTL position and to better characterize functionally distinct haplotypes which will provide information to find causal genes for the traits.

Selection of Target Materials for GLP Genotoxic Tests by Searching the Mutagenicity Information of Chemicals by Occupational Safety and Health Act (산안법 관리대상물질의 변이원성 검색을 통한 GLP 유전독성 시험대상 후보물질의 선정)

  • Rim, Kyung-Taek;Lim, Cheol-Hong;Ahn, Byung-Joon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.3
    • /
    • pp.254-284
    • /
    • 2015
  • Objectives: There is a requirement to select target materials for mutagenicity(Genotoxicity) testing, so we determined to set the test priorities of them by searching the related database. Methods and Results: We searched a number of databases to find information on mutagenicity tests with chemicals under the Occupational Safety and Health Act(OSH Act), such as KOSHANET, National Toxicology Program(NTP), European Chemicals Agency(ECHA), US National Library of Medicine(NLM), and Genetic Toxicology Data Bank(GENE-TOX), as well as ChemIDplus webpage, and presented the information. Also we anticipated their hazards with ACToR sites to confirm the 58 mutagenicity(Genotoxicity) tests we will perform. Conclusions: We presented target materials for mutagenicity testing with specific GLP tests consisting of reverse mutation(Ames), chromosomal aberration and micronucleus test.

Detection of Mutated DNA Fragment by the Heteroduplex Analysis at the Temperature Gradient Gel (온도 기울기(temperature gradient) 젤에서 Heteroduplex Analysis 기법을 이용한 돌연변이 DNA의 검출)

  • 조용석;구미자;박귀근;박영서;강종백
    • Environmental Mutagens and Carcinogens
    • /
    • v.18 no.2
    • /
    • pp.83-88
    • /
    • 1998
  • To detect the mutation in a given sequence, there are variety of methods developed by use of the gel electrophoresis. One of the methods, TGGE (Temperature Gradient Gel Electrophoresis), is a popular technique because it can detect mutations in DNA fragment with ease and at low cost. This study used 200 bp BamHI-digested DNA fragment containing the human $\varepsilon$-globin promoter which was mutated[$\varepsilon$ F1*(-141), GATA- I*(-163), and GATA-1* & $\varepsilon$F1]. This BamHI-digested DNA fragment was directly used to detect the mutated DNA fragment on 50% denaturant gel with temperature gradient of 45$^{\circ}C$ through $53^{\circ}C$. In agreement with the theoretical result of MELTSCAN program (Brossette and Wallet, 1994) the mobilities of mutated DNA fragments were shown to be nearly distinguished on the temperature gradient gel. In contrast to the above result the heteroduplex analysis under the temperature gradient condition was shown to detect the mutated DNA fragments through the heteroduplex formation between strands of mutated DNA and wild-type DNA.

  • PDF

Design Methodology of Automotive Wheel Bearing Unit with Discrete Design Variables (이산 설계변수를 포함하고 있는 자동차용 휠 베어링 유닛의 설계방법)

  • 윤기찬;최동훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.122-130
    • /
    • 2001
  • In order to improve the efficiency of the design process and the quality of the resulting design, this study proposes a design method for determining design variables of an automotive wheel-bearing unit of double-row angular-contact ball bearing type by using a genetic algorithm. The desired performance of the wheel-bearing unit is to maximize system life while satisfying geometrical and operational constraints without enlarging mounting spae. The use of gradient-based optimization methods for the design of the unit is restricted because this design problem is characterized by the presence of discrete design variables such as the number of balls and standard ball diameter. Therefore, the design problem of rolling element bearings is a constrained discrete optimization problem. A genetic algorithm using real coding and dynamic mutation rate is used to efficiently find the optimum discrete design values. To effectively deal with the design constraints, a ranking method is suggested for constructing a fitness function in the genetic algorithm. A computer program is developed and applied to the design of a real wheel-bearing unit model to evaluate the proposed design method. Optimum design results demonstrate the effectiveness of the design method suggested in this study by showing that the system life of an optimally designed wheel-bearing unit is enhanced in comparison with that of the current design without any constraint violations.

  • PDF

Biochemical and molecular features of LRRK2 and its pathophysiological roles in Parkinson's disease

  • Seol, Won-Gi
    • BMB Reports
    • /
    • v.43 no.4
    • /
    • pp.233-244
    • /
    • 2010
  • Parkinson's disease (PD) is the second most common neurodegenerative disease, and 5-10% of the PD cases are genetically inherited as familial PD (FPD). LRRK2 (leucine-rich repeat kinase 2) was first reported in 2004 as a gene corresponding to PARK8, an autosomal gene whose dominant mutations cause familial PD. LRRK2 contains both active kinase and GTPase domains as well as protein-protein interaction motifs such as LRR (leucine-rich repeat) and WD40. Most pathogenic LRRK2 mutations are located in either the GTPase or kinase domain, implying important roles for the enzymatic activities in PD pathogenic mechanisms. In comparison to other PD causative genes such as parkin and PINK1, LRRK2 exhibits two important features. One is that LRRK2's mutations (especially the G2019S mutation) were observed in sporadic as well as familial PD patients. Another is that, among the various PD-causing genes, pathological characteristics observed in patients carrying LRRK2 mutations are the most similar to patients with sporadic PD. Because of these two observations, LRRK2 has been intensively investigated for its pathogenic mechanism (s) and as a target gene for PD therapeutics. In this review, the general biochemical and molecular features of LRRK2, the recent results of LRRK2 studies and LRRK2's therapeutic potential as a PD target gene will be discussed.

MICAL-like Regulates Fasciclin II Membrane Cycling and Synaptic Development

  • Nahm, Minyeop;Park, Sunyoung;Lee, Jihye;Lee, Seungbok
    • Molecules and Cells
    • /
    • v.39 no.10
    • /
    • pp.762-767
    • /
    • 2016
  • Fasciclin II (FasII), the Drosophila ortholog of neural cell adhesion molecule (NCAM), plays a critical role in synaptic stabilization and plasticity. Although this molecule undergoes constitutive cycling at the synaptic membrane, how its membrane trafficking is regulated to ensure proper synaptic development remains poorly understood. In a genetic screen, we recovered a mutation in Drosophila mical-like that displays an increase in bouton numbers and a decrease in FasII levels at the neuromuscular junction (NMJ). Similar phenotypes were induced by presynaptic, but not postsynaptic, knockdown of mical-like expression. FasII trafficking assays revealed that the recycling of internalized FasII molecules to the cell surface was significantly impaired in mical-like-knockdown cells. Importantly, this defect correlated with an enhancement of endosomal sorting of FasII to the lysosomal degradation pathway. Similarly, synaptic vesicle exocytosis was also impaired in mical-like mutants. Together, our results identify Mical-like as a novel regulator of synaptic growth and FasII endocytic recycling.

Experiences of Breast Cancer Women Undertaking Genetic Test (국내 고위험 유전성 유방암 환자의 유전자검사 경험)

  • Jun, Myung-Hee;Choi, Kyung-Sook;Ahn, Sei-Hyun;Gu, Bo-Kyung
    • Asian Oncology Nursing
    • /
    • v.5 no.2
    • /
    • pp.146-158
    • /
    • 2005
  • Purpose: This study was to obtain a understanding of breast cancer women with high risk for hereditary cancer syndrome. Method: A micro-ethnography was used, including participation observation, open-ended in-depth interviews. Results: Two major arguments were derived. First, When Korean women at high risk to hereditary breast cancer make a decision about whether to take a genetic test, they are strongly motivated by a desire to preserve close kinship bonds and "family love" among their siblings, parents and children. Second, Even after genetic risk assessment and counseling services, Korean women at high-risk for developing a hereditary breast cancer who have been informed that they are mutation carriers, still hold onto previous beliefs about cancer causation. Their cancer prevention strategies are constructed according to their unchanged perceptions and beliefs about cancer causation. Conclusion: More sensitive genetic counseling program needs to be developed. Referral programs and clinical services must be attentive to cultural values and beliefs otherwise cultural attitudes and practices toward genetic counseling will not change.

  • PDF