• Title/Summary/Keyword: mutant strain

Search Result 693, Processing Time 0.026 seconds

On a highly proteolytic mutant strain of Aspergillus flavus (Aspergillus flavus의 강력 protease생성 돌연변이의 유발)

  • 이영녹;박용근;고상균
    • Korean Journal of Microbiology
    • /
    • v.18 no.2
    • /
    • pp.51-58
    • /
    • 1980
  • Mutational experiments were performed to improved to improve the protease productivity of Aspergillus flavus KU 153, which is selected among the wild strains. A UV-induced mutant strain having high protease productivity was obtained by the use of the clear zone method as a simple criterion for a primary screening test. Neutral and alkaline protease activities of hte mutant strain were higher than 1.8 times, comopared with those of the parental strain, respectively, while in the case of acid protease, it was 2.7 times. The mutant strain selected was more powerful in the production of cellulase and amylase, as well s protease in wheat bran, compared with those of the parental strain. protease production of the parental strain has reached maximum level at 3 days culture, while alkaline nad neutral protease production of the mutantstrain has reached at 2 days culture. On the other hand, the mutant strain formed the spore slowly, compared with the parental strain. Column chromatography of the neutral protease on DEAE-Sephadex A-50 showed that the mutant strain was not induced the formation of another neutral protease isozyme, but induced the variation in the function of regulatory gene.

  • PDF

Further induction of amylase producing mutants from a highly proteolytic mutant strain of asppergillus flavus (돌연변이에 의한 Aspergillus flavus의 아밀라아제 생성능의 개량)

  • 이영록;고상균;김봉수
    • Korean Journal of Microbiology
    • /
    • v.18 no.4
    • /
    • pp.161-171
    • /
    • 1980
  • A mutant strain having increased productivity of both enzymes, protease and amylase, was obtained from A. flavus KU 153, isolatd from South Korea for its high protease production by successive ultra-violet light irradiation, Two glucoamylases from the mutant strain selected were purified from wheat branculture by successive salting out, followed by dialysis and column chromatography, and their characteristics were compared with those of the wild strain. Glucoamylase production of the mutant selected was increased about 3.3 times compared with the wild strain, and 2.1 times compared with the parental strain, ${\alpha}-amylase$ activity of the mutant selected was about 2 times hugher than that of the wild strain or the parental strain. Protease and cellulase productivities of the muant selected were all alike compared with those of the highly proteolytic mutant, the parental strain. Therefore, it was considered that the back mutation on the protease production did not occurred in the formation process of the glucoamylase producing mutant. Total activities of glucoamylase I and II from the mutant selected were 2.86 and 3.65 times higher compared with those from the wild strain, respectively. Considering the optimal pH-thermal stability and Km-Vmax value of glucoamylase I and II from both strains, wild and mutant, it was deduced that the characteristics of glucoamylase I and II from the wild strain did not altered during the mutation process. Therefore, it was concluded that the selected mutant did not induce the formation of another glucoamylase isozyme, or the changes in the characteristics of the glucoamylase, but induce the productivity of the same glucoamylase I and II by the action of regulatory gene.

  • PDF

Enhanced production of cellulase by a mutant strain of aspergillus phoenicis (Aspergillus phoenicis의 한 돌연변이주에 의한 cellulase의 생성 및 그 특성)

  • 이영록;고상균
    • Korean Journal of Microbiology
    • /
    • v.20 no.3
    • /
    • pp.125-133
    • /
    • 1982
  • Mutational experiments were performed to imporve the cellulase productivity of Aspergillus phoenicis KU175, isolated from the southern part of Korea, as a high cellulase producer. By treatment ultra-violet light nad 4-NQO(4-Nitroquinoline-N-Oxide), mutation waas induced, and treatment ultra-violet light and 4-NQO (4-Nitroquinoline-N-Oxide), mutation was induced, and A.phoenicis KU175-115 was finally selected for its highest avicelase production. Avicelase production of the mutant was increased about 2 times compared with those of the wild strain. However, activities of other hydrolytic enzymes, such as amylase, protease and nuclease, of the mutant strain didn't show a marked difference compared with those of the nuclease, of the mutant strain didn't show a marked difference compared with the wild strain, except slight increase in ribonuclease activity and slight decrease in glucoamylase activity. Avicelases from the mutant strain selected were purified from wheat bran culture by successive salting out, followed by dialysis and column chromatography, and their charcteristics were compared with thosw of the wild strain. Avicelase was separated into three peaks in the mutant strain as well as in the case of wild strain. Avicelase II activity of the mutant strain was prominently higher than that of the wild strain, while avicelase I and III activities of those were equivalent. The optimal pH ranges and stability of avicelase II from the mutant strain were pH4-5 and pH3.5-6.0, respectively, as well as in the case of the wild strain. The optimal temperature and thermal stability of avicelase II from the mutant strain were $40{\sim}50^{\circ}C\;and\;20{\sim}55^{\circ}C$, respectively. These results were same as those of the wild strain. By the using of Eadie-Hofastee plot, $K_m\;and\;V_{max}$ of avicelase II from the mutant and the wild strain were calculated to be 2.29mg/ml and $4.84{\mu}g$ reducing sugar as glucose per min equally, from the line fitted to the data by the least square method. Activity of avicelase II from the mutant strain was slightly activated by $Mg^{++}\;but\;inhibited\;by\;Cu^{++}, \;Mn^{++}\;and\;Zn^{++}$, as well as in the case of the wild strain. Therefore, it was concluded that the mutant didn't induce the formation of another avicelase isozyme, or the changes in the properties of avicelase, but induce the changes in the productively of the same avicelase II by the action of regulatory gane.

  • PDF

Strain Improvement of Candida tropicalis for the Production of Xylitol: Biochemical and Physiological Characterization of Wild-type and Mutant Strain CT-OMV5

  • Rao Ravella Sreenivas;Jyothi Cherukuri Pavanna;Prakasham Reddy Shetty;Rao Chaganti Subba;Sarma Ponnupalli Nageshwara;Rao Linga Venkateswar
    • Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.113-120
    • /
    • 2006
  • Candida tropicalis was treated with ultraviolet (UV) rays, and the mutants obtained were screened for xylitol production. One of the mutants, the UV1 produced 0.81g of xylitol per gram of xylose. This was further mutated with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), and the mutants obtained were screened for xylitol production. One of the mutants (CT-OMV5) produced 0.85g/g of xylitol from xylose. Xylitol production improved to 0.87 g/g of xylose with this strain when the production medium was supplemented with urea. The CT-OMV5 mutant strain differs by 12 tests when compared to the wild-type Candida tropicalis strain. The XR activity was higher in mutant CT-OMV5. The distinct difference between the mutant and wild-type strain is the presence of numerous chlamvdospores in the mutant. In this investigation, we have demonstrated that mutagenesis was successful in generating a superior xylitol-producing strain, CT-OMV5, and uncovered distinctive biochemical and physiological characteristics of the wild-type and mutant strain, CT-OMV5.

Selective Isolation and Characterization of Schwanniomyces castellii Mutants with Increased Production of a-Amylase and Glucoamylase

  • Ryu, Yeon-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.3 no.2
    • /
    • pp.95-98
    • /
    • 1993
  • This study was carried out to isolate and characterize the mutant strains of Schwanniomyces castellii NRRL Y-2477. Mutants were prepared with the treatment of ethyl methane sulfonate. 2-deoxy-D-glucose resistant mutants were isolated and two mutants were selected based on their high production of amylolytic enzymes and their ability to ferment starch. The mutants selected had higher a-amylase and glucoamylase activities than the wild type strain from several other carbon sources. Especially, it was revealed that mutant strain M-9, when cultured in the presence of glucose as a sole carbon source, shows relatively high activities of a-amylase and glucoamylase compared to those of the wild type strain. In result, this mutant strain can be considered as a constitutive producer of amylolytic enzymes. To compare the ethanol production ability of wild type strain and of mutant strains selected, an alcohol fermentation was carried out using 100 g/l soluble starch. Mutant strain M-9 did not improve the direct alcohol fermentation of starch, despite its excellent amylolytic activities performance. On the other hand, mutant strain M-6 produced 37.9 g/l (4.8%, v/v) ethanol by utilizing about 82% of substrate.

  • PDF

Increased Production of Recombinant Protein by Escherichia coli Deficient in Acetic Acid Formation

  • Koo, Tae-Young;Park, Tai-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.789-793
    • /
    • 1999
  • The effect of acetic acid formation deficiency on recombinant E. coli fermentation was investigated using a mutant strain deficient in acetic acid formation. A mutant strain which does not grow under anaerobic conditions was isolated. The acetic acid production in this strain was negligible in aerobic batch fermentation. The cloned-gene expression in the mutant strain was higher than the wild-type strain. Fed-batch fermentations with controlled specific growth rates were carried out in order to compare the cloned-gene expression between the wild-type and the mutant strains. The expression decreased along with the specific growth rate in both strains. The cloned-gene expression in the mutant strain was 60% higher than in the wild-type strain at the same specific growth rate.

  • PDF

Role of Surface Protective Antigen A in the Pathogenesis of Erysipelothrix rhusiopathiae Strain C43065

  • Borrathybay, Entomack;Gong, Feng-juan;Zhang, Lei;Nazierbieke, Wulumuhan
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.2
    • /
    • pp.206-216
    • /
    • 2015
  • To clarify the role of surface protective antigen A (SpaA) in the pathogenesis of Erysipelothrix rhusiopathiae C43065 (serotype 2), the spaA deletion mutant of E. rhusiopathiae ${\Delta}spaA$ was constructed by homologous recombination. The virulence of the ${\Delta}spaA$ mutant decreased more than 76-fold compared with that of the wild-type strain C43065 in mice. The mutant strain was sensitive to the bactericidal action of swine serum, whereas the wild-type strain was resistant. The adhesion of wild-type strain to MEF cells was inhibited significantly by treatment with rabbit antiserum against recombinant SpaA (rSpaA) as compared with the treatment with normal rabbit serum, but the mutant strain was not affected. The mutant strain was readily taken up by mouse peritoneal macrophages in the normal rabbit serum, whereas the wild-type strain was resistant. Whereas the rabbit antiserum against rSpaA promoted the phagocytosis of wild-type strain by macrophages, the mutant strain was not affected. In addition, mice vaccinated with the formalin-killed mutant strain were provided 40% protection against challenge by the homologous virulent strain as compared with those with wild-type strain, NaOH-extracted antigen, or rSpaA, which provided more than 80% protection against the same infection. These suggested that SpaA has an important role in the pathogenesis of E. rhusiopathiae infection and could be a target for vaccination against swine erysipelas.

Selection and Characterization of Pseudomonas aeruginosa EMS1 Mutant strain Showing Enhanced Biosurfactant Production

  • Cha, Mi-Sun;Lee, Kuen-Hee;Lee, Na-Eun;Lee, Sang-Joon
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.434-437
    • /
    • 2003
  • A new bacterial strain, was isolated from activated sludge, identified and named P. aeruginosa EMS1. The new strain produced surface-active rhamnolipids by batch cultivation in mineral salts medium with waste flying oils. The mutant strain KH7, designated P. aeruginosa EMS1, derived by random mutagenesis with N-methyl-N-nitro-N-nitrosogoanidine treatment producing high levels of the biosurfactants was selected by an ion-pair plate assay. The mutant strain KH7 showed 4-5 times more hydrocarbon emulsification as compared to the parent when grown on waste frying oils and various hydrocarbons. Furthermore, P. aeruginosa EMS1 and mutant strain KH7 was also able to use whey as a co-substrate for growth and biosurfactant production. As results of this study, mutant strain KH7 is a very efficient biosurfactant producer, and its culture conditions are relatively inexpensive and economical. Rhamnolipid is synthesized by the rhlAB-encoded rhamnosyltransferase. To be convinced of these genes, we performed PCR based on P. aeruginosa PAO1 whole-genome database. rhl gene cluster nucleotide and amino acid sequences were compared for both parent and mutant. Comparison of nucleotide sequence of rhlAB, there were usually terminal's codons exchange.

  • PDF

유사 생합성 경로를 가진 Streptomyces sp.의 혼합배양을 이용한 Doxorubicin 생합성

  • Choi, Yun-Hwa;Hong, Young-Soo;Lim, Jai-Yun;Lee, Jung-Joon
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.6
    • /
    • pp.580-585
    • /
    • 1997
  • We selected two mutants namely strain D5 and Nu23 by mutagenesis of anthracycline producing Streptomyces: the former is an $\varepsilon$-rhodomycinone overproducing mutant selected from Streptomyces sp. C5, a baumycin producer and the latter, a blocked mutant of early pathway for doxorubicin biosynthesis obtained from Streptomyces peucetius ATCC 27952, a doxorubicin producer. The mutant strain Nu23 does not produce anthracycline metabolites but retains the most of enzyme activities converting aklavinone to doxorubicin and the mutant strain D5 produced $\varepsilon$-rhodomycinone at a level of 150 $\mu$g/ml. These strains were grown separately in NDYE medium and each was mixed at day 3 by equal volume of culture broth but the quantity of doxorubicin produced was far below an estimation based on the level of $\varepsilon$-rhodomycinone normaly produced by the strain D5. On the other hand doxorubicin was reached at maximum level after 4 days in the mixed culture condition which was composed of culture broth of strain D5 grown for 6 day and that of strain Nu23 grown for 3 day. It was turned out that the growth of mutant strain D5 was inhibited by the accumulation of daunorubicin and doxorubicin in mixed culture broth, which cause the limitation of $\varepsilon$-rhodomycinone.

  • PDF

Construction of multiple mutant strains by mating procedures for the cloning of pmn and pmb genes encoding amino acid permeases in neurospora crassa

  • Han, Hyo-Young;Min, Kyung-Hee
    • Journal of Microbiology
    • /
    • v.33 no.2
    • /
    • pp.142-145
    • /
    • 1995
  • The pumb gene encoding a basic amino acid transport protein in Neurospora crassa could be cloned by using a mutant strain defective in pmb gene as a host strain, using a negative selection on the media containing amino acid analogue canavanine. To select positive transformants of the genes for cloning, an auxotrophic marker (his-2) was added to a pmb mutant strain by mating ; a triple mutant (pmn : pmb : his-2) was constructued by crossing a strain defective in basic amino acid transport system (# 1683-bat um 535 "A") to a double mutant strain defective in neutral amino acid transport and histidine production (mitrol : his-2 "a"). Crossing was performed on synthetic crossing (SC) media containing histidine. The pmn : pmb and pmn :pmb : his-2 strains were selected among the progeny colonies from crosses on plates containing 5- .mu.g/ml para-fluoro-phenylalanine (PFPA), 200 .mu.g/ml canavanine, and 500 .mu.g/ml histidine. The selected colonies were cultured on minimal media with or without histidine for discarding pmn : pmb strain, because the pmn : pmb : his -2 strain grows only on histidine containing media. The pmn :pmb : his-2 strain selected can be used as a host strain for the cloning of the pmb and the pmn genes from a Neurospora genomic library by means of positive selections.

  • PDF