• 제목/요약/키워드: mutant frequency

검색결과 114건 처리시간 0.031초

Expression and DNA Sequence of the Gene Coding for the lux-specific Fatty Acyl-CoA Reductase from photobacterium phosphoreum

  • Lee, Chan-Yong;Edward A. Meighen
    • Journal of Microbiology
    • /
    • 제38권2호
    • /
    • pp.80-87
    • /
    • 2000
  • The nucleotide sequence of the luxC gene coding for lux-specific fatty acyl-CoA reductase and the upstream DNA (325bp)of the structural gene from bioluminescent bacterium, Photobacterium phosphoreum, has been deternubed. An open reading frame extending for more than 20 codons in 325 bp DNA upstream of luxC was not present in both directions. The lux gene can be translated into a polypeptide of 54 kDa and the amino acid sequences of lux specific reductases of P. phosphoreum shares 80, 65, 58, and 62% identity with those of the Photobacterium leiognathi, Vibrio fischeri, Vibrio harveyi, and Xehnorhabdus luminescenens reductases, respectively. Analyses of codon usage, showing that a high frequency (2.3%) of the isoleucine codon, AUA, in the luxC gene compared to that found in Escherichia coli genes (0.2%) and its absence in the luxA and B genes, suggested that the AUA codon may play a modulator role in the expression of lux gene in E. coli. The structural genes (luxC, D, A, B, E) of the P. phosphoreum coding for luciferase (${\alpha}$,${\beta}$) and fatty acid reductase (r, s, t) polypeptides can be expressed exclusively in E. coli under the T7 phage RNA polymerase/promoter system and identificationof the [35S]methionine labelled polypeptide products. The degree of expression of lux genes in analyses of codon usage. High expression of the luxC gene could only be accomplished in a mutant E. coli 43R. Even in crude extracts, the acylated acyl-CoA reductase intermediate as well as acyl-CoA reductrase activities could be readily detected.

  • PDF

$^{15}$N NMR Relaxation Study of the Catalytic Residues in Y14F Mutant Ketosteroid Isomerase

  • Yoon, Ye-Jeong;Lee, Hyeong-Ju;Kim, Chul;Lee, Hee-Cheon
    • 한국자기공명학회논문지
    • /
    • 제8권2호
    • /
    • pp.77-85
    • /
    • 2004
  • $^1$H-detected $^{15}$N NMR was employed to investigated the effect of mutation (Y14F) on the dynamic properties of catalytic residues in ${\Delta}^5$-3- ketosteroid isomerase (KSI) from Conamonas testosteroni. In particular, the backbone dynamics of the catalytic residues have been studied in free enzyme and its complex with a steroid ligand, 19-nortestosterone hemisuccinate, by $^{15}$N relaxation measurements. The relaxation data were analyzed using the model-free formalism to extract the model-free parameters (S$^2$, ${\tau}_e$, and R$_{ex}$). The results show that the mutation causes a significant decrease in the order parameter (S$^2$) for the catalytic residues of free Y14F KSI, presumably due to breakdown of the hydrogen bond network by mutation. In addition, the order parameters of Phe-14 and Asp-99 increased slightly upon ligand binding, indicating a slight restriction of the high-frequency (pico- to nanosecond) internal motions of the residues in the complexed Y14F KSI, while the order parameter of Tyr-55 decreased significantly upon ligand binding.

  • PDF

Spike protein D614G and RdRp P323L: the SARS-CoV-2 mutations associated with severity of COVID-19

  • Biswas, Subrata K.;Mudi, Sonchita R.
    • Genomics & Informatics
    • /
    • 제18권4호
    • /
    • pp.44.1-44.7
    • /
    • 2020
  • The severity of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), greatly varies from patient to patient. In the present study, we explored and compared mutation profiles of SARS-CoV-2 isolated from mildly affected and severely affected COVID-19 patients in order to explore any relationship between mutation profile and disease severity. Genomic sequences of SARS-CoV-2 were downloaded from Global Initiative on Sharing Avian Influenza Data (GISAID) database. With the help of Genome Detective Coronavirus Typing Tool, genomic sequences were aligned with the Wuhan seafood market pneumonia virus reference sequence and all the mutations were identified. Distribution of mutant variants was then compared between mildly and severely affected groups. Among the numerous mutations detected, 14408C>T and 23403A>G mutations resulting in RNA-dependent RNA polymerase (RdRp) P323L and spike protein D614G mutations, respectively, were found predominantly in severely affected group (>82%) compared with mildly affected group (<46%, p < 0.001). The 241C>T mutation in the non-coding region of the genome was also found predominantly in severely affected group (p < 0.001). The 3037C>T, a silent mutation, also appeared in relatively high frequency in severely affected group compared with mildly affected group, but the difference was not statistically significant (p = 0.06). We concluded that spike protein D614G and RdRp P323L mutations in SARS-CoV-2 are associated with severity of COVID-19. Further studies will be required to explore whether these mutations have any impact on the severity of disease.

항생제 노출에 따른 Klebsiella pneumoniae의 내성 특성 (Characteristics of Klebsiella pneumoniae exposed to serial antibiotic treatments)

  • 정래승;조아라;김정진;안주희
    • 미생물학회지
    • /
    • 제52권4호
    • /
    • pp.428-436
    • /
    • 2016
  • 항균제에 대한 내성 증가는 국내뿐만 아니라 세계적으로도 인류 건강에 큰논란이 되고 있다. 박테리아에 의한 감염을 치료하기 위해 같은 혹은 다른 계열의 항생제에 순차적으로 노출된다. 따라서, 본 연구는 ciprofloxacin과 meropenem의 순차적 처리에 따른 폐렴간균(Klebsiella pneumoniae)의 생육, 항생제 민감성, 돌연변이 빈도, ${\beta}$-lactamase activity, 생물막 형성 및 내성 관련 유전자 발현을 평가하기 위해 설계되었다. 처리군은 대조군(control; CON), 1/2 MIC ciprofloxacin (1/2CIP), 2 MIC ciprofloxacin (2CIP), 1/2 MIC ciprofloxacin+1/2 MIC meropenem+2 MIC ciprofloxacin (1/2CIP-1/2MEM-2CIP), 1/2 MIC ciprofloxacin+1/2 MIC meropenem+2 MIC meropenem(1/2CIP-1/2MEM-2MEM), 1/2 MIC ciprofloxacin+2 MIC ciprofloxacin+2 MIC meropenem (1/2CIP-2CIP-2MEM)을 포함한다. 24시간의 배양 동안 2CIP처리군에서 K. pneumoniae의 생육이 관찰되지 않았다. 모든 처리군에서 planktonic cell의 수는 7에서 10 log CFU/ml의 유의적인 차이를 보였으나 biofilm cell의 수는 7 log CFU/ml로 비슷하였다. 돌연변이 빈도는 1/2CIP-1/2MEM-2CIP에서 가장 낮은 14%을 보였다. 대조군과 비교하여 1/2CIP-2CIP-2MEM 처리 K. pneumoniae는 piperacillin, cefotaxime, nalidixic에 대한 민감도가 감소되었다. 1/2CIP-1/2MEM-2CIPrk 가장 높은 ${\beta}$-lactamase activity(22 nmol/min/ml)을 보인 반면 1/2CIP-2CIP-2MEM은 가장 낮은 ${\beta}$-lactamase activity (6 nmol/min/ml)을 보였다. Multidrug efflux pump 관련 유전자(acrA, acrB, and ramA)의 발현은 1/2CIP-1/2MER-2MER and 1/2CIP2CIP-2MER 처리된 K. pneumoniae에서 2배 이상 증가하였다. 따라서 순차적 항생제의 처리는 K. pneumoniae의 항생제 내성 양상을 변화시킬 수 있다.

기능획득 돌연변이 인삼 모상근의 대량생산 (Mass Production of Gain-of-Function Mutants of Hair Roots in Ginseng)

  • 고석민;인동수;정화지;최동욱;유장렬
    • Journal of Plant Biotechnology
    • /
    • 제34권4호
    • /
    • pp.285-291
    • /
    • 2007
  • 본 연구는 아그로박테리움 공동배양법을 이용한 기능획득 인삼 모상근의 대량생산을 위한 조건 확립에 대한 것이다. 일반적으로, 인삼과 같이 형질전환을 통한종자의 확보가 어려운 식물에서는 loss-of-function을 이용한 기능유전체 연구에 한계가 있다. 한편, 유전자의 기능을 활성화시키는 방법 (gain-of-function)인 activation tagging 기술은 이러한 문제점을 극복할 수 있는 대안이 될 수 있으며, Agrobacterium rhizogenes를 이용한 모상근 생산 시스템은 대량의 돌연변이체를 안정적으로 용이하게 얻을 수 있다는 점에서 최적의 시스템이라고 할 수 있다. 본 연구에서는 activation-tagging된 효율적인 형질전환 모상근 생산에 있어서의 최적의 아그로박테리움 균주 및 인삼조직, 배지조성 등에 대한 조건을 확립하였으며, 다양한 배지에서의 형질전환 모상근의 생장률 및 분지율, 표현형 등을 조사하였다. 엽병 절편을 activation-tagging vector pKH01을 가지고 있는 A. rhizogenes R1000와 공동배양하였을 때 배양 4주후 85.9%의 빈도로 모상근이 생산되었다. 모상근의 최대 생장과 분지도를 나타내는 배양조건을 조사한 바 엽병절편을 1/2 SH 배지에서 4주 배양하였을 때 왕성하게 생장하였으며 2.6의 분지도를 보여주었다. 최종적으로 1,989개체의 독립적인 형질전환 모상근 line을 생산하였으며, 이들 모상근 line은 인삼 진세노사이드 생합성 관련 유전자의 발굴 및 기능해석에 유용하게 쓰일 것이다.

한국인의 신생아 황달과 UGT1A1 및 CYP1A2 유전자 다형성과의 연관성 (The Association of Neonatal Hyperbilirubinemia with UGT1A1 and CYP1A2 Gene Polymorphism in Korean Neonates)

  • 강훈;임준호;김지숙;김은령;김성도;이희제;정주호
    • Clinical and Experimental Pediatrics
    • /
    • 제48권4호
    • /
    • pp.380-386
    • /
    • 2005
  • 목 적 : 신생아 황달은 백인에 비해 중국, 일본, 한국 등 동아시아인에서 2배 이상 많이 발생하는 것으로 보아 유전적 연관성이 있을 것으로 생각되어 왔고, 최근 일본인, 타이완 중국인, 한국인에서 UGT1A1 유전자의 Gly71Arg 다형성이 신생아 황달과 연관성이 있다고 보고되었다. 선천적으로 UDP-glucuronosyltransferase(UDPGT)에 결함이 있는 경우에는 부경로(alternative pathway)로 CYP1A2 효소를 자극하여 빌리루빈 대사가 이루어진다. 출생 후 6-14주가 되어야 성인 UDPGT 정상치에 도달하기 때문에 신생아 황달에서 빌리루빈 대사에 CYP1A2 부경로가 중요한 역할을 할 것으로 생각된다. 이에 저자들은 UGT1A1과 CYP1A2 유전자의 다형성이 한국인 신생아 황달의 발생과 어떤 연관성이 있는지 알아보고자 본 연구를 시행하였다. 방 법 : 혈중 빌리루빈 수치가 12 mg/dL 이상의 건강하고, 황달의 다른 위험인자가 없는 만삭아 79명과 대조군 68명으로부터 혈액 0.5 cc를 채취하여 DNA을 분리하였다. UGT1A1 유전자는 Polymerase chain reaction(PCR) 후에 염기서열 분석을 통해서 Gly71Arg 유전자 다형성을 확인하였으며, CYP1A2는 제한효소인 MboII를 이용하여 PCR-restriction fragment length polymorphism 방법과 염기서열 분석을 통해서 T2698G 유전자 다형성을 확인하였다. 결 과 : UGT1A1 유전자의 Gly71Arg 다형성은 변이형 대립 유전자 분포가 환자군에서 32%로 대조군 11%보다 높았다(P<0.0001). CYP1A2 유전자의 다형성은 변이형 유전형 분포가 환자군에서는 41.8%, 대조군에서 32.3%로 환자군이 높았으며 통계학적으로 유의하였다(P=0.015). 변이형 대립유전자의 빈도는 환자군에서 21%로 대조군 19%보다 높았으나 통계학적 유의성은 없었다(P=0.706). Gly71Arg와 T2698G의 변이형 발생의 연관성은 없었다(P=0.635). 결 론 : 한국인의 신생아 황달에서 체내의 빌리루빈 대사의 주경로와 부경로에 작용하는 효소의 유전자인 UGT1A1과 CYP1A2의 다형성이 확인되었고, UGT1A1 유전자의 Gly71Arg 다형성은 신생아 황달과 연관이 있었으나 CYP1A2 유전자의 T2698G 다형성은 신생아의 황달과 연관이 없었다.

Investigation of ICAM-1 and β3 Integrin Gene Variations in Patients with Brain Tumors

  • Yilmaz, Umit;Zeybek, Umit;Kahraman, Ozlem Timirci;Kafadar, Ali Metin;Toptas, Bahar;Yamak, Nesibe;Celik, Faruk;Yaylim, Ilhan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권10호
    • /
    • pp.5929-5934
    • /
    • 2013
  • Background: Primary brain tumors constitute a small percent of all malignant cancers, but their etiology remains poorly understood. ${\beta}3$ integrin (ITGB3) has been recognized to play influential roles in angiogenesis, tumor growth and metastasis. Intercellular adhesion molecule-1 (ICAM-1) is a surface glycoprotein important for tumor invasion and angiogenesis. The aim of this study was to investigate whether specific genetic polymorphisms of ICAM-1 and ITGB3 could be associated with brain cancer development and progression in a Turkish population. Our study is the first to our knowledge to investigate the relationship between brain tumor risk and ICAM-1 and ${\beta}3$ integrin gene polymorphisms. Materials and Methods: The study covered 92 patients with primary brain tumors and 92 age-matched healthy control subjects. Evaluation of ${\beta}3$ integrin (Leu33Pro (rs5918)) and ICAM-1 (R241G (rs1799969) and K469E (rs5498)) gene polymorphisms was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Results: According to results of our research, the A allele of the ICAM-1 R241G gene polymorphism appeared to be a risk factor for primary brain tumors (p<0.001). Similarly, the frequency of the A mutant allele of ICAM-1 R241G was statistically significant in patients with brain tumors classified as glioma (p<0.001). When allele and genotype distributions of ICAM-1 K469E, ICAM-1 R241G and ${\beta}3$ integrin Leu33Pro gene polymorphisms were evaluated with age, sex, and smoking, there were no statistically significant differences. Haplotype analysis revealed that the frequencies of GAC (rs1799969-rs5498-rs5918) and GAT (rs1799969-rs5498-rs5918) haplotypes were significantly lower in patients as compared with controls (p=0.001; p=0.036 respectively). Conclusions: This study provides the first evidence that ICAM-1 R241G SNP significantly contributes to the risk of primary brain tumors in a Turkish population. In addition, our results suggest that ICAM-1 R241G in combination ICAM-1 K469E may have protective effects against the development of brain cancer.

Molecular Mechanisms of 5-Azacytidine-Induced Trifluorothymidine-Resistance In Chinese Hamster V79 Cells

  • Jin Kyong-Suk;Lee Yong-Woo
    • 대한의생명과학회지
    • /
    • 제11권2호
    • /
    • pp.165-173
    • /
    • 2005
  • A potent demethylating agent, 5-Azacytidine (5-AzaC) has been widely used as in many studies on DNA methylation, regulation of gene expression, and cancer biology. The mechanisms of the demethylating activity were known to be formation of complex between DNA and DNA methyltransferase (MTase), which depletes cellular MTase activity. However, 5-AzaC can also induce hypermethylation of a transgene in a transgenic cell line, G12 cells and it was explained as a result of defense mechanisms to inactivate foreign gene(s) somehow. This finding evoked the question that whether the phenomenon of hypermethylation induced by 5-AzaC is limited to the transgene or it can be occurred in endogenous gene(s). In order to answer the question, mutagenicity test of 5-AzaC and molecular characterization of mutants obtained from the test were performed using an endogenous gene, thymidine kinase (tk) in Chinese hamster V79 cells. When V79 and V79-J3 subclone cells were treated with 1, 2.5 ,5, $10{\mu}M$ of 5-AzaC for 48 hours, their maximum mutant frequencies were revealed as $6\times10^{-3}\;at\;5{\mu}M$(350-fold induction over background) and $8\times10^{-3}\;at\;2.5{\mu}M$ (l,800-fold induction over background) respectively. Since the induction rates were too high to be induced by true mutations, many trifluorothymidine (TFT)-resistant $(TFT^R)$ cells were subjected to Northern blot analysis to check the presence of tk transcripts. Surprisingly, all clones tested possessed the transcripts in a similar level, that implicates the $TFT^R$ phenotype induced by 5-AzaC has not given rise to hypermethylation of the gene in spite of unusually high mutation frequency. In addition, it has shown that the TK activity in the pool of 5-AzaC-induced $TFT^R$ cells has about a half of that in spontaneously-induced $TFT^R$ cells or in non-selected parental V79-J3 cells. This result suggests that the mechanism(s) underlying the TFT-resistance between spontaneously occurred and 5-AzaC-induced cells may be different. These findings have shown that the $TFT^R$ phenotype induced by 5-AzaC has not given rise to hypermethylation of the tk gene, and 5-AzaC may be induced by one or combined pathways among many drug resistance mechanisms. The exact mechanisms for the 5-AzaC-induced $TFT^R$ phenotype remain to elucidate.

  • PDF

Bovine leukocyte adhesion deficiency

  • Kehrli, Marcus E. Jr.;Park, Yong-ho;Yoo, Han-sang
    • 대한수의학회지
    • /
    • 제39권2호
    • /
    • pp.247-256
    • /
    • 1999
  • A disease of young Holstein calves characterized by recurrent pneumonia, ulcerative and granulomatous stomatitis, enteritis with bacterial overgrowth, periodontitis, delayed wound healing, persistent neutrophilia and death at an early age had been originally described in 1983 and again in 1987. Most of these calves had stunted growth and a persistent, progressive neutrophilia (often exceeding 100,000/ml). By investigation of pedigrees, all of the affected calves have now been traced to a common sire and confirmed by polymerase chain reaction (PCR) diagnostic DNA testing to be homozygous carriers of a defective allele for bovine CD18. Neutrophils from these calves have several functional deficits and, most importantly, fail to adhere in a ${\beta}_2$-integrin dependent manner. The ${\beta}_2$-integrins represent a family of glycoproteins which participate in various leukocyte adhesion reactions during host defense. The presence or absence of ${\beta}_2$-integrin molecules can be demonstrated on the surface of neutrophils, monocytes and lymphocytes from normal or affected calves using specific monoclonal antibodies and flow cytometry, or by colloidal gold immunolabeling and scanning electron microscopy in backscatter mode. Deficiency of the ${\beta}_2$-integrins on all leukocyte types in Holstein calves is analogous to leukocyte adhesion deficiency (LAD) seen in humans. Neutrophils in bovine (BLAD) and human LAD patients are unable to adhere to the endothelial lining of the cardiovascular system thus interrupting egression of neutrophils into infected tissues. Other leukocytes, while still deficient in expression of the ${\beta}_2$-integrins, are still able to efficiently egress from the blood stream due to interactions of other adhesion molecules that are not as highly expressed on neutrophils. Both BLAD cattle and LAD children (who do not receive bone marrow transplants) often die at an early age as a result of the failure of neutrophils to extravasate into infected tissues. In 1991, Shuster, et $al^{27}$, identified two point mutations within the alleles encoding bovine CD18 in a Holstein calf afflicted with leukocyte adhesion deficiency. One mutation causes an aspartic acid to glycine substitution at amino acid 128 (D128G) in an extracellular region of this adhesion glycoprotein that is highly conserved (> 95% identity) between humans, cattle and mice. The other mutation is silent. Numerous calves with clinical symptoms of leukocyte adhesion deficiency have since been tested and all have been found homozygous for the D128G allele. In addition, calves homozygous far the D128G allele have been identified during widespread DNA testing in the United States. All cattle with the mutant allele are related to one bull, who through artificial insemination (A.I.), sired many calves in the 1950's and 1960's. The carrier frequency of the D128G CD18 allele among U.S. Holstein cattle had reached approximately 15% among active A.I. bulls and 8% among cows. By 1993, the organization of the dairy industry and the diagnostic test developed to genotype cattle, enabled virtually complete eradication of bovine leukocyte adhesion deficiency among current and future A.I. bulls.

  • PDF

병원녹농균(病院綠膿菌)의 동종균접합(同種菌接合)에 의한 다제내성(多劑耐性)의 전달(傳達) (Transmission of Multiple Drag-Resistance in Hospital Pseudomonas aeruginosa by Intraspecies Conjugation System)

  • 김정;한왕수;서인수
    • 대한미생물학회지
    • /
    • 제14권1호
    • /
    • pp.49-61
    • /
    • 1979
  • Two hundred and ninety-five strains of Peudomonas aeruginosa isolated from clinical sources were tested for drug resistance and demonstration of R plasmids by intraspecies conjugation system. Sixty strains were found highly resistant to two or more of drugs. The rate of resistant strains were 38.9% to kanamycin(km), 33.2% to streptomydn(sm), 22.7% to sulfisomidine(Sa), 14.2% to chloramphenicol(Cp), 13.8% to tetracycline(Tc), 3.0% to carbenicillin(Cb), and to gentamicin(Gm), respectively. But no strains was resistant to nalidixic acid and colistine. They were resistant to per milliliter to more than $400{\mu}g$ per ml. of Tc, $800{\mu}g$ per ml of Cp and of Sm, $6,400{\mu}g$ per ml. of Sa, $200{\mu}g$ per ml. of Cb, $100{\mu}g$ per ml. of Gm, and $25{\mu}g$ per ml. of colistine. Forty-three strains of Pseudomonas aeruginosa could be transferred their resistance to Pseudomonas aeruginosa 2-70, 1005 rifampin resistant FP-auxotrophic mutant. Of sixty multiple resistant strains, forty-three(71.6%) demonstrated R plasmids; nineteen carried resistance to(Tc Cp Sm Sa), six to(Tc Cp Sm), three to(Tc Cp Sa), and Cp, five to(Tc Sm Sa), two to(Tc Sa), (Cp Sm) and Tc, and one to(Cp Sm Sa). Degree of resistance of recipients recieving R plasmids from donors were almost the same level of resistance as the donor in regardless of mating temperature at $25^{\circ}C$ and $37^{\circ}C$. Resistance to Tc, Sm, and Sa were transferred to a very few of recipient cells at five minutes after mating with donor and recipient cells but resistance to Cp were transferred to the majority of recipient cells. The transfer frequency of Tc, Cp, Sm, and Sa resistance from donors to recipients were from $1.0^{-1.4}\;to\;1.0^{-3.5}$ at $25^{\circ}C$ for 18 hours of incubation and were from $1.0^{-1.5}\;to\;1.0^{-3.5}$ at $37^{\circ}C$ for 18 hours of incubation.

  • PDF