• Title/Summary/Keyword: must cell

Search Result 677, Processing Time 0.022 seconds

Design of Miniaturization Terminal Antenna for 2.4 GHz WiFi Band with MZR (MZR을 이용한 2.4 GHz WiFi 대역 소형 단말기 안테나 설계)

  • Lee, Young-Hun
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.14-21
    • /
    • 2019
  • In this paper, we implemented an on-board miniaturization antenna operating 2.4 GHz using MZR(Mu Zero Resonator). It is must be operating under the constraint that the size of the small terminal PCB should be $78{\times}38{\times}0.8mm^3$ and the size of the system should be $63{\times}38{\times}0.8mm^3$ and the size of the radiating part should be $15{\times}38{\times}0.8mm^3$. The feeding structure uses a CPW structure for stable feeding and a feeding point at the upper left of the system board. A magnetic field coupling structure is used for coupling the feeding part and the antenna. The resonance frequency of the MZR is determined by the series inductance and capacitance of the cell, so the gap between the cells, the length of the cell, the length of the interdigital capacitor, and the spacing between the radiation part and the ground plane are analyzed. The antenna was designed and fabricated using the results. The total size of the antenna including the feed structure is $20.8{\times}9.0{\times}0.8mm^3$, and the electrical length is $0.1664{\lambda}_0{\times}0.072{\lambda}_0{\times}0.0064{\lambda}_0$. The measurement result for 10 dB bandwidth, gain and directivity are 440 MHz(18.3%), 0.4405 dB, and 2.722 dB respectively. It is confirmed that the radiation pattern has omnidirectional characteristics and it can be applied to ultra small terminal antenna.

Crystal Structures of Fully Dehydrated Zeolite $Cd_6-A$ and of $Rb_{13.5}-A$, the Product of its Reaction with Rubidium, Containing Cationic Clusters

  • Jang, Se-Bok;Kim, Yang;Seff, Karl
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.3
    • /
    • pp.236-241
    • /
    • 1994
  • The crystal structures of $Cd_6-A$ evacuated at $2{\times}10^{-6}$ Torr and 750$^{\circ}$C (a=12.216(l) ${\AA}$), and of the product of its reaction with Rb vapor (a= 12.187(l) ${\AA}$), have been determined by single-crystal x-ray diffraction techniques in the cubic space group Pm$\bar{3}$m at 21(l)$^{\circ}$C. Their structures were refined to the final error indices, $R_1$=0.055 and $R_2$=0.067 with 191 reflections, and $R_1$=0.066 and $R_2$=0.049 with 90 reflections, respectively, for which I>3${\sigma}$(I). In dehydrated $Cd_6-A$, six $Cd^{2+}$ ions are found at two different threefold-axis sites near six-oxygen ring centers. Four $Cd^{2+}$ ions are recessed 0.50 ${\AA}$ into the sodalite cavity from the (111) plane at O(3), and the other two extend 0.28 ${\AA}$ into the large cavity from this plane. Treatment at 250 $^{\circ}$C with 0.1 Torr of Rb vapor reduces all $Cd^{2+}$ ions to give $Rb_{13.5^-}$A. Rb species are found at three crystallographic sites: three $Rb^+$ ions lie at eight-oxygen-ring centers, filling that position, and ca. 10.5 $Rb^+$ ions lie on threefold axes, 8.0 in the large cavity and 2.5 in the sodalite cavity. In this structure, ca. 1.5 Rb species more than the 12 $Rb^+$ ions needed to balance the anionic charge of zeolite framework are found, indicating that sorption of $Rb^0$ has occurred. The occupancies observed can be most simply explained by two "unit cell" compositions, $Rb_{12^-}A{\cdot}Rb$ and $Rb_{12^-}A{\cdot}2Rb$, of approximately equal population. In sodalite cavities, $Rb_{12^-}A{\cdot}Rb$ would have a $(Rb_2)^+$ cluster and $Rb_{12^-}A{\cdot}2Rb$ would have a triangular $(Rb_3)^+$ cluster. Each of the atoms of these clusters must bind further through a six-oxygen ring to a large cavity $Rb^+$ to give $(Rb_4)^{3+}$ (linear) and $(Rb_6)^{4+}$ (trigonal). Other unit-cell compositions and other cationic cluster compositions such as $(Rb_8)^{n+}$ may exist.

Battery Module Bonding Technology for Electric Vehicles (전기자동차 배터리 모듈 접합 기술 리뷰)

  • Junghwan Bang;Shin-Il Kim;Yun-Chan Kim;Dong-Yurl Yu;Dongjin Kim;Tae-Ik Lee;Min-Su Kim;Jiyong Park
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.33-42
    • /
    • 2023
  • Throughout all industries, eco-friendliness is being promoted worldwide with focus on suppressing the environmental impact. With recent international environment policies and regulations supported by government, the electric vehicles demand is expected to increase rapidly. Battery system itself perform an essential role in EVs technology that is arranged in cells, modules, and packs, and each of them are connected mechanically and electrically. A multifaceted approach is necessary for battery pack bonding technologies. In this paper, pros and cons of applicable bonding technologies, such as resistance welding, laser and ultrasonic bonding used in constructing electric vehicle battery packs were compared. Each bonding technique has different advantages and limitations. Therefore, several criteria must be considered when determining which bonding technology is suitable for a battery cell. In particular, the shape and production scale of battery cells are seen as important factors in selecting a bonding method. While dealing with the types and components of battery cells, package bonding technologies and general issues, we will review suitable bonding technologies and suggest future directions.

Effect of Compensation for Thickness Reduction by Chemical Degradation of PEMFC Membrane on Performance and Durability (PEMFC 고분자막의 화학적인 열화에 의한 두께 감소 보정이 성능 및 내구성에 미치는 영향)

  • Sohyeong Oh;Yoojin Kim;Seungtae Lee;Donggeun Yoo;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • As the demand for hydrogen electric vehicles for commercial vehicles increases, the durability of PEMFCs must increase more than five times that of passenger cars, so research and development to improve durability is urgent. When the PEMFC membrane electrode assembly (MEA) undergoes chemical degradation, the MEA thickness decreases and pinholes occur. In this study, changes in the performance and durability of the MEA were measured while increasing the clamping pressure of the unit cell after open circuit voltage (OCV) holding, an accelerated chemical degradation experiment. As the clamping pressure increased, the resistance of the polymer membrane and the membrane/electrode contact resistance decreased, improving the I-V performance and reducing the hydrogen permeability. As the hydrogen permeability decreased, the OCV increased. When the pinhole area was removed and the MEA clamping pressure was increased, the hydrogen permeability decreased sharply, confirming that the local degradation has a large effect on the performance and durability of the entire cell. When the pinhole was removed and re-clamping and OCV holding was evaluated, it was confirmed that the durability improved according to the decrease in membrane resistance and hydrogen permeability.

Chitosan Increases the Release of Renal Dipeptidase from Porcine Renal Proximal Tubule Cells

  • Hyun Joong, Yoon;Kim, Young-Ho;Park, Sung-Wook;Lee, Hwanghee-Blaise;Park, Haeng-Soon
    • Animal cells and systems
    • /
    • v.7 no.4
    • /
    • pp.309-315
    • /
    • 2003
  • Renal dipeptidase (RDPase, membrane dipeptidase, dehydropeptidase 1, EC 3.4.13.19) has been widely studied since it was first purified from porcine kidney brush border membrane. It was reported that RDPase activity in urine samples of acute and chronic renal failure patients decreases. Nitric oxide (NO) is a highly reactive free radical involved in a number of physiological and pathological processes. NO is able to act in a dual mode, leading either to induction of apoptosis or to blunted execution of programmed cell death. NO inhibited the RDPase release from porcine renal proximal tubules, which could be blocked by L-NAME. Chitosan, the linear polymer of D-glucosamine in $\beta$(1\longrightarrow4) linkage, not only reversed the decreased RDPase release by NO but also increased NO production in the proximal tubule cells. The stimulatory effect of NO on RDPase release from proximal tubules in the presence of chitosan must be different from the previously proposed mechanism of RDPase release via NO signaling pathway. Chitosan stimulated the RDPase release in the proximal tubules and increased RDPase activity to 220% and 250% at 0.1% and 1%, respectively. RDPase release was decreased to about 40% in the injured proximal tubules and was recovered in proportion to the increase of chitosan. Chitosan may be useful in recovery of renal function from $HgCl_2$injury.

Implantation in Ruminants: Changes in Pre-Implantation, Maternal Recognition of Pregnancy, Control of Attachment and Invasion - Review -

  • Nagaoka, K.;Yamaguchi, H.;Aida, H.;Yoshioka, K.;Takahashi, M.;Christenson, R.K.;Imakawa, K.;Sakai, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.6
    • /
    • pp.845-855
    • /
    • 2000
  • As high as 50% of pregnancies are known to fail and the majority of such losses occur during the peri-implantation period. For the establishment of pregnancy in mammalian species, therefore, implantation of the conceptus to the maternal endometrium must be completed successfully. Physiological events associated with implantation differ among mammals. In ruminant ungulates, an elongation of the trophohlast in early conceptus development is required before the attachment of the conceptus to the uterine endometrium. Moreover, implantation sites are restricted to each uterine caruncula where tissue remodeling, feto-maternal cell fusion and placentation take place in a coordinated manner. These unique events occur under strict conditions and are regulated by numerous factors from the uterine endometrium and trophoblast in a spatial manner. Interferon-tau (IFN-${\tau}$), a conceptus-derived anti-Iuteolytic factor, which rescues corpus luteum from its regression in ruminants, is particularly apt to play an important role as a local regulator in coordination with other factors, such as TGF-${\beta}$, Cox-2 and MMPs at the attachment and placentation sites.

The Experimental Study on Reinforced Slope with Geocomb (지오콤 비탈면 보호공법의 활용에 관한 실험적 연구)

  • Ahn, Won Sik;Kim, Chul Moon;Kim, Ug Ki;Kim, Young Sub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.1
    • /
    • pp.37-43
    • /
    • 2012
  • Generally levee or revetment becomes weak by erosion (scour) due to saturation of ground with infiltration, flowing water. So when levee or revetment is constructed, slope reinforcement must be installed to prevent failure. In this study experimental test was performed for verifying shear resistance, horizontal permeability and rooting ability of Geocomb designed to address the shortcomings of 3-dimension Geocell. Geocomb is one of geosynthetics and the advanced system of geogrid. According to the results of shear test, internal friction angle of reinforced ground with Geocomb was increasing compared with existing material and horizontal permeability of ground with Geocomb was bigger than geocell, porous geocell reinforcing ground. Lastly rooting ability of geocomb is most excellent. These results determined for the inner surface of the cell is net structure.

The role of EL2 in the infrared transmission images of defects in semi-insulating GaAs

  • Kang, Seong-Jun;Lee, Sung-Seok
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.725-728
    • /
    • 2011
  • Infrared transmission images from GaAs semi insulating wafers were considered for years as directly related to the quantum absorption by electrons on fundamental states of deep centers, especially EL2. The satisfying correspondence of these images with the dislocations revealed by etching or X ray topography or infrared tomography led to the opinion that a strong concentration of EL2 centers was to be expected in the immediate vicinity of the dislocations. More recent work indicates that contrary to the expected behavior the photoqu$\acute{e}$nching of transmission images at T=80K does not appreciably change the image structure itself but more largely the uniform background level of absorption. Such investigations show that the transmission images of isolated dislocations (Indium doped materials) or cell structures of tangled dislocations (undoped materials) can be partly attributed to scattered light; similar operation at T=10K removes the dark features associated to EL2 but still preserves the skeleton of the pattern which is due to scattering. A result of the measurements is that dislocations must not be considered any longer as inexhaustive EL2 reservoirs. The lifetime of the photoqu$\acute{e}$nching mechanism is shown to vary differently for EL2 centers located close to the dislocations or in the matrix. In this paper we will develop the details of infrared image photoqu$\acute{e}$nching experiments in the vicinity of dislocations; undoped and In doped GaAs materials will be shown. These results will be discussed in the light of surface etching experiments.

Effect of MoSe2 on Contact Resistance of ZnO/Mo Junction in Cu(In,Ga)Se2 Thin Film Solar Module (MoSe2가 Cu(In,Ga)Se2 박막 태양전지 모듈의 ZnO/Mo 접합의 접촉 저항에 미치는 영향)

  • Cho, Sung Wook;Kim, A Hyun;Lee, Gyeong A;Jeon, Chan Wook
    • Current Photovoltaic Research
    • /
    • v.8 no.3
    • /
    • pp.102-106
    • /
    • 2020
  • In this paper, the effect of MoSe2 on the contact resistance (RC) of the transparent conducting oxide (TCO) and Mo junction in the scribed P2 region of the Cu(In,Ga)Se2 (CIGS) solar module was analyzed. The CIGS/Mo junction becomes ohmic-contact by MoSe2, so the formation of the MoSe2 layer is essential. However, the CIGS solar module has a TCO/MoSe2/Mo junction in the P2 region due to structural differences from the cell. The contact resistance (RC) of the P2 region was calculated using the transmission line method, and MoSe2 was confirmed to increase RC of the TCO/Mo junction. B doped ZnO (BZO) was used as TCO, and when BZO/MoSe2 junction was formed, conduction band offset (CBO) of 0.6 eV was generated due to the difference in their electron affinities. It is expected that this CBO acts as a carrier transport barrier that disturbs the flow of current, resulting in increased RC. In order to reduce the RC caused by CBO, MoSe2 must be made thin in a CIGS solar module.

Analysis of Topographical Factors in Woomyun Mountain Debris Flow Using GIS (GIS를 이용한 우면산 토석류 지형인자 분석)

  • Lee, Hanna;Kim, Gihong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.809-815
    • /
    • 2020
  • A number of investigations and studies have been conducted in various fields regarding the sediment disasters of Mt. Woomyeon that occurred in July 2011. We collected and compared the topographic information of the general points where debris flows did not occur and the collapse points where the debris flow occurred in order to find out the characteristics of the collapse points in Woomyeon mountain. The collected topographic information is altitude, curvature, slope, aspect and TPI(topographic position index). As a result of comparison, there were relatively many collapse points at an altitude of 210m to 250m, and at a slope of 30° to 40°. In addition, the risk of collapse was low in a cell where the curvature was close to 0, and the risk was higher in concave terrain than in convex terrain. In the case of TPI, there was no statistical difference between the general points and the collapse points when the analysis radius was larger than 200m, and there was a correlation with the curvature when the analysis radius was smaller than 50m. In the case of debris flows that are affected by artificial structures or facilities, there is a possibility of disturbing the topographic analysis results. Therefore, if a research on debris flow is conducted on a mountain area that is heavily exposed to human activities, such as Woomyeon mountain, diversified factors must be considered to account for this impact.