• Title/Summary/Keyword: music signal

Search Result 265, Processing Time 0.022 seconds

Effect of Digital Noise Reduction of Hearing Aids on Music and Speech Perception

  • Kim, Hyo Jeong;Lee, Jae Hee;Shim, Hyun Joon
    • Journal of Audiology & Otology
    • /
    • v.24 no.4
    • /
    • pp.180-190
    • /
    • 2020
  • Background and Objectives: Although many studies have evaluated the effect of the digital noise reduction (DNR) algorithm of hearing aids (HAs) on speech recognition, there are few studies on the effect of DNR on music perception. Therefore, we aimed to evaluate the effect of DNR on music, in addition to speech perception, using objective and subjective measurements. Subjects and Methods: Sixteen HA users participated in this study (58.00±10.44 years; 3 males and 13 females). The objective assessment of speech and music perception was based on the Korean version of the Clinical Assessment of Music Perception test and word and sentence recognition scores. Meanwhile, for the subjective assessment, the quality rating of speech and music as well as self-reported HA benefits were evaluated. Results: There was no improvement conferred with DNR of HAs on the objective assessment tests of speech and music perception. The pitch discrimination at 262 Hz in the DNR-off condition was better than that in the unaided condition (p=0.024); however, the unaided condition and the DNR-on conditions did not differ. In the Korean music background questionnaire, responses regarding ease of communication were better in the DNR-on condition than in the DNR-off condition (p=0.029). Conclusions: Speech and music perception or sound quality did not improve with the activation of DNR. However, DNR positively influenced the listener's subjective listening comfort. The DNR-off condition in HAs may be beneficial for pitch discrimination at some frequencies.

Effect of Digital Noise Reduction of Hearing Aids on Music and Speech Perception

  • Kim, Hyo Jeong;Lee, Jae Hee;Shim, Hyun Joon
    • Korean Journal of Audiology
    • /
    • v.24 no.4
    • /
    • pp.180-190
    • /
    • 2020
  • Background and Objectives: Although many studies have evaluated the effect of the digital noise reduction (DNR) algorithm of hearing aids (HAs) on speech recognition, there are few studies on the effect of DNR on music perception. Therefore, we aimed to evaluate the effect of DNR on music, in addition to speech perception, using objective and subjective measurements. Subjects and Methods: Sixteen HA users participated in this study (58.00±10.44 years; 3 males and 13 females). The objective assessment of speech and music perception was based on the Korean version of the Clinical Assessment of Music Perception test and word and sentence recognition scores. Meanwhile, for the subjective assessment, the quality rating of speech and music as well as self-reported HA benefits were evaluated. Results: There was no improvement conferred with DNR of HAs on the objective assessment tests of speech and music perception. The pitch discrimination at 262 Hz in the DNR-off condition was better than that in the unaided condition (p=0.024); however, the unaided condition and the DNR-on conditions did not differ. In the Korean music background questionnaire, responses regarding ease of communication were better in the DNR-on condition than in the DNR-off condition (p=0.029). Conclusions: Speech and music perception or sound quality did not improve with the activation of DNR. However, DNR positively influenced the listener's subjective listening comfort. The DNR-off condition in HAs may be beneficial for pitch discrimination at some frequencies.

A Review on Correlation between Music and Learning Activity Using EEG Signal Analysis (뇌파분석을 이용한 음악이 학습활동에 미치는 영향에 대한 고찰)

  • Yun-Seok Jang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.367-372
    • /
    • 2023
  • In this paper, we analyzed through the EEG signals how musical stimulus affects learning activities. Musical stimuli were divided into sedative and stimulative tendency music, preferred and non-preferred music, and the learning activity tasks were divided into mathematics tasks and memorization tasks. The signals measured in the EEG experiments were analyzed with the power spectrum of SMR waves known to be related to human concentration. Those spectra used for quantitative comparison in this paper. As a result the power of the EEG signals was observed to be greater than the case where music was given as a stimulus. Regardless of the type of task, the power of the EEG signals was observed to be greater in the case of sedative tendency than in the case of stimulative tendency, and the power of the EEG signals was observed to be greater in the case of favorite music than in the case of unfavorite music. From these results, it is estimated that if the musical stimulus exists, in the case of sedative tendency music, and in the case of favorite music, concentration can be increased than in the relative case.

Low Complexity Super Resolution Algorithm for FOD FMCW Radar Systems (이물질 탐지용 FMCW 레이더를 위한 저복잡도 초고해상도 알고리즘)

  • Kim, Bong-seok;Kim, Sangdong;Lee, Jonghun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • This paper proposes a low complexity super resolution algorithm for frequency modulated continuous wave (FMCW) radar systems for foreign object debris (FOD) detection. FOD radar has a requirement to detect foreign object in small units in a large area. However, The fast Fourier transform (FFT) method, which is most widely used in FMCW radar, has a disadvantage in that it can not distinguish between adjacent targets. Super resolution algorithms have a significantly higher resolution compared with the detection algorithm based on FFT. However, in the case of the large number of samples, the computational complexity of the super resolution algorithms is drastically high and thus super resolution algorithms are difficult to apply to real time systems. In order to overcome this disadvantage of super resolution algorithm, first, the proposed algorithm coarsely obtains the frequency of the beat signal by employing FFT. Instead of using all the samples of the beat signal, the number of samples is adjusted according to the frequency of the beat signal. By doing so, the proposed algorithm significantly reduces the computational complexity of multiple signal classifier (MUSIC) algorithm. Simulation results show that the proposed method achieves accurate location even though it has considerably lower complexity than the conventional super resolution algorithms.

Performance Evaluation of JADE-MUSIC Estimation for Indoor Environment

  • Satayarak, Peangduen;Rawiwan, Panarat;Chamchoy, Monchai;Supanakoon, Pichaya;Tangtisanon, Prakit
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1654-1659
    • /
    • 2003
  • In this paper, the performance evaluation of the JADE-MUSIC estimation based on the indoor channel is presented. By means of the JADE-MUSIC algorithm, DOA and time delay can be obtained simultaneously. In the JADE-MUSIC method, the channel impulse response is first estimated from the received samples and then this impulse response is employed to estimate DOAs and time delays of multipath waves. Moreover, according to the JADE-MUSIC characteristics, it can work in cases when the number of impinging waves is more than the number of antenna elements, unlike the traditional parametric subspace-based method, such a case is not true. Therefore, we employ the JADE-MUSIC algorithm applying for the real indoor environment where is rich of the multipath propagation waves and can imply that the number of waves is very possibly higher than that of the array element. The experiment is carried out in our laboratory considered to be the real indoor environment. The performance of the JADE-MUSIC algorithm is evaluated in terms of the comparison between the simulation and experiment results by using the simulated channel model and the real indoor channel model, respectively. It is clear that the joint angle and delay estimation using the simulated channel model are in good agreement with the estimation using the real indoor channel model. Therefore, we can say that the JADE-MUSIC algorithm accomplishes the high performance to jointly estimate the angle and delay of the arriving signal for the indoor environment.

  • PDF

Study on the Amplitude Modification Audio Watermarking Technique for Mixed Music with High Inaudibility (높은 비가청성을 갖는 믹스 음악의 크기 변조 오디오 워터마킹 기술에 관한 연구)

  • Kang, Se-Koo;Lee, Young-Seok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.1
    • /
    • pp.67-74
    • /
    • 2016
  • In this paper, we propose a watermarking technology for a mixed music. The mixed music means recreated music that contained a number of musics in one audio clip. Royalty associated with the audio content is typically imposed by the full audio content. However, the calculation of royalties gives rise to conflict between copyright holders and users in the mixed music because it uses not full audio content but a fraction of that. To solve the conflict related with the mixed music, we propose a audio watermarking technique that inserts different watermarks for each audio in the audio that make up the mixed music. The proposed watermarking scheme might have poor SNR (signal to noise ratio) to embed to each audio clip. To overcome poor SNR problem, we used inaudible pseudo random sequence which modifies typical pseudo random sequence to canonical signed digit (CSD) form. The proposed method verifies the performance by each watermark extraction and the time internal estimation valies from the mixed music.

Statistical Analysis of Brain Activity by Musical Stimulation (음악적 자극에 의한 뇌 활성도의 통계적 해석)

  • Jung, Yu-Ra;Jang, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.89-94
    • /
    • 2021
  • In this paper, we presented the results of analysis with data obtained through EEG measurements to confirm the effect of musical stimulus when performing mathematical tasks. While the subject was solving a mathematical task, favorite and unfavorite music classified according to the subject's preference were presented as musical stimulus and the tasks were divided into memorization task and procedure task. The data measured in the EEG experiments was divided into theta waves, SMR waves and mid-beta waves which are the frequency bands related to concentration to compare the relative power spectrum values. In our results, in the case of comparing no music with favorite music and no music with unfavorite music, a significant difference was observed in the several channels, and the average difference was shown in the channels F3 and F4 of the frontal lobe. In that channels, the power was found to be greater when the music was presented than the case where there was no music. Depending on the subject's preference, it was confirmed that favorite music showed greater brain activity than unfavorite music.

Efficient Mobile Robot Localization through Position Tracking Bias Mitigation for the High Accurate Geo-location System (고정밀 위치인식 시스템에서의 위치 추적편이 완화를 통한 이동 로봇의 효율적 위치 추정)

  • Kim, Gon-Woo;Lee, Sang-Moo;Yim, Chung-Hieog
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.752-759
    • /
    • 2008
  • In this paper, we propose a high accurate geo-location system based on a single base station, where its location is obtained by Time-of-Arrival(ToA) and Direction-of-Arrival(DoA) of the radio signal. For estimating accurate ToA and DoA information, a MUltiple SIgnal Classification(MUSIC) is adopted. However, the estimation of ToA and DoA using MUSIC algorithm is a time-consuming process. The position tracking bias is occurred by the time delay caused by the estimation process. In order to mitigate the bias error, we propose the estimation method of the position tracking bias and compensate the location error produced by the time delay using the position tracking bias mitigation. For accurate self-localization of mobile robot, the Unscented Kalman Filter(UKF) with position tracking bias is applied. The simulation results show the efficiency and accuracy of the proposed geo-location system and the enhanced performance when the Unscented Kalman Filter is adopted for mobile robot application.

Performance Evaluation of Satellite System Based on Transmission Beamformer (송신 빔형성기 기반의 위성 시스템 구조 성능평가)

  • Mun, Ji-Youn;Hwang, Myeong-Hwan;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.4
    • /
    • pp.713-720
    • /
    • 2018
  • The Signal Intelligence (SIGINT) system based on Angle-of-Arrival(AOA) estimation, interference suppression, and transmission beamforming techniques is a cutting edge technology for efficiently collecting various signal information. In this paper, we present the efficient structure of a satellite system consisted of an AOA estimator, an adaptive beamformer, a signal processing and D/B unit, and a transmission beamformer, for collecting signal information. For accurately estimating AOAs of various signals, efficiently suppressing interference or jamming signals, and efficiently transmitting the collected information or data, we employ Multiple Signal Classification (MUSIC), Minimum Variance Distortionless Response (MVDR), and Minimum Mean Square Error (MMSE) algorithms, respectively. Also, we evaluate and analysis the performance of the presented satellite system through the computer simulation.

Performance Analysis of Adaptive Beamforming System Based on Planar Array Antenna (평면 배열 안테나 기반의 적응 빔형성 시스템 성능 분석)

  • Mun, Ji-Youn;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1207-1212
    • /
    • 2018
  • The signal intelligence (SIGINT) technology is actively used for collecting various data, in a number of fields, including a military industry. In order to collect the signal information and data and to transmit/receive the collected data efficiently, the accurate angle-of-arrival (AOA) information is required and communication disturbance from the interference or jamming signal should be minimized. In this paper, we present the structure of an adaptive beam-forming satellite system based on the planar array antenna, for collecting and transmitting/receiving the signal information and data efficiently. The presented adaptive beam-forming system consists of an antenna in the form of a planar array, an AOA estimator based on the Multiple Signal Classification (MUSIC) algorithm, an adaptive Minimum Variance Distortionless Response (MVDR) interference canceler, a signal processing and D/B unit, and a transmission beamformer based on Minimum mean Square Error (MMSE). In addition, through the computer simulation, we evaluate and analyze the performance of the proposed system.