• Title/Summary/Keyword: muscle protein hormone

Search Result 52, Processing Time 0.02 seconds

Endothelin-l as a Regulator of Vascular Smooth Muscle Contraction-related Signal Transduction and Endothelin-l-induced Pain-related Nociception -The Approach of Basic Physical Therapy for the Study of Pain Specialized Physical Therapy- (혈관평활근 수축-연관 신호전달 체계에 대한 Endothelin-1의 역할과 Endothelin-1-유도통증-연관 유해감각 -통증전문물리치료 연구를 위한 기초물리치료학적 접근을 중심으로-)

  • Kim, Jung-Hwan;Lee, Sook-Hee;Lee, Sang-Bin;Choi, Yoo-Rim;Kim, Bo-Kyung;Park, Ju-Hyun;Koo, Ja-Pung;Choi, Wan-Suk;An, Ho-Jung;Choi, Jeong-Hyun;Kim, Moo-Gi;Kim, Soon-Hee
    • Journal of Korean Physical Therapy Science
    • /
    • v.13 no.2
    • /
    • pp.99-119
    • /
    • 2006
  • Endothelin (ET) is a 21 amino acid peptide with multifunctional effects on the vasculature as well as a variety of other cell types such as respiratory, gastrointestinal, urogenital, endocrine, central nervous systems, and others. Endothelin has emerged as a modulator by autocrine and paracrine actions for many cellular activities, including vasoconstriction, cell proliferation, hormone production, neurotransmitter and/or neuromodulator. The endothelin family consists of three closely related peptides, ET-1, ET-2, and ET-3 derived from separate genes, such as chromosome 6, 1, and 20, respectively. ET-1 is the predominant isoform produced in the cardiovascular system and about which most is known. Endothelin receptors are seven-transmembrane GTP-binding protein-coupled receptors, which are classified into endothelin-A (ETA) and endothelin-B (ETB) receptors. Interestingly, recent evidence is accumulating to suggest that ET -1 may contribute to a variety of pain states such as allodynia and hyperalgesia in animals and humans. Therefore, in this review the biological characteristics and contraction-related mechanism of endothelin-1 in mammalian cells will be summarized. Especially, we focus on multifunctional roles for ET-1 in noxious stimulation-induced pain for the study of pain specialized physical therapy.

  • PDF

Effects of dietary n-6:n-3 polyunsaturated fatty acid ratio on growth performance, blood indexes, tissue fatty acid composition and the expression of peroxisome proliferator-activated receptor gamma signaling related genes in finishing pigs

  • Chen, Jing;Cui, Hongze;Liu, Xianjun;Li, Jiantao;Zheng, Jiaxing;Li, Xin;Wang, Liyan
    • Animal Bioscience
    • /
    • v.35 no.5
    • /
    • pp.730-739
    • /
    • 2022
  • Objective: This study investigated the effects of dietary n-6:n-3 polyunsaturated fatty acid (PUFA) ratio on growth performance, blood indexes, tissue fatty acid composition and the gene expression in finishing pigs. Methods: Seventy-two crossbred ([Duroc×Landrace]×Yorkshire) barrows (68.5±1.8 kg) were fed one of four isoenergetic and isonitrogenous diets with n-6:n-3 PUFA ratios of 2:1, 3:1, 5:1, and 8:1. Results: Average daily gain, average daily feed intake and gain-to-feed ratio had quadratic responses but the measurements were increased and then decreased (quadratic, p<0.05). The concentrations of serum triglyceride, total cholesterol and interleukin 6 were linearly increased (p<0.05) with increasing of dietary n-6:n-3 PUFA ratio, while that of high-density lipoprotein cholesterol tended to decrease (p = 0.062), and high-density lipoprotein cholesterol:low-density lipoprotein cholesterol ratio and leptin concentration were linearly decreased (p<0.05). The concentration of serum adiponectin had a quadratic response but the measurement was decreased and then increased (quadratic, p<0.05). The proportion of C18:3n-3 was linearly decreased (p<0.05) in the longissimus thoracis (LT) and subcutaneous adipose tissue (SCAT) as dietary n-6:n-3 PUFA ratio increasing, while the proportion of C18:2n-6 and n-6:n-3 PUFA ratio were linearly increased (p<0.05). In addition, the expression levels of peroxisome proliferator-activated receptor gamma (PPARγ) and lipoprotein lipase in the LT and SCAT, and adipocyte fatty acid binding protein and hormone-sensitive lipase (HSL) in the SCAT had quadratic responses but the measurements were increased and then decreased (quadratic, p<0.05). The expression of HSL in the LT was linearly decreased (p<0.05) with increasing of dietary n-6:n-3 PUFA ratio. Conclusion: Dietary n-6:n-3 PUFA ratio could regulate lipid and fatty acid metabolism in blood and tissue. Reducing dietary n-6:n-3 PUFA ratio (3:1) could appropriately suppress expression of related genes in PPARγ signaling, and result in improved growth performance and n-3 PUFA deposition in muscle and adipose tissue in finishing pigs.