• 제목/요약/키워드: murine macrophage RAW 264.7 cells

검색결과 263건 처리시간 0.029초

RAW 264.7 세포에서 투석시킨 커피 추출액의 선천면역활성화와 항염증의 동시발생 (Concurrent Innate Immunity Activation and Anti-inflammation effects of Dialyzed Coffee Extract in RAW 264.7 Cells, Murine Macrophage Lineage)

  • 윤철수;이석근
    • 대한구강악안면병리학회지
    • /
    • 제41권3호
    • /
    • pp.121-129
    • /
    • 2017
  • Coffee (Coffea spp.) is one of the most important agricultural commodities, being widely consumed in the world. Various beneficial health effects of coffee have been extensively investigated, but data on habitual coffee consumption and its bio-physiological effect have not been clearly explained as well as it is not proved the cause and effect between drinking coffee and its bio-physiological reactions. We made the dialyzed coffee extract (DCE), which is absorbable through gastrointestinal tract, in order to elucidate the cellular effect of whole small coffee molecules. RAW 264.7 cells, a murine macrophage lineage, were directly treated with DCE, i.e., DCE-2.5 (equivalent to 2.5 cups of coffee a day), DCE-5, and DCE-10, for 12 hours, and their protein extracts were examined by immunoprecipitation high performance liquid chromatography (IP-HPLC). RAW 264.7 cells differently expressed the inflammation-related proteins depending on the doses of DCE. RAW 264.7 cells treated with DCE showed marked increase of cathepsin C, cathepsin G, CD20, CD28, CD31, CD68, indicating the activation of innate immunity. Particularly, the macrophage biomarkers, cathepsin G, cathepsin C, CD31, and CD68 were markedly increased after DCE-5 and DCE-10 treatments, and the lymphocyte biomarkers, CD20 and CD28 were consistently increased and became marked after DCE-10 treatment. On the other hand, RAW 264.7 cells treated with DCE showed consistent increase of IL-10, an anti-inflammatory factor, but gradual decreases of different pro-inflammatory proteins including $TNF{\alpha}$, COX-2, lysozyme, MMP-2, and MMP-3. In particular, the cellular signaling of inflammation was gradually mitigated by the reduction of $TNF{\alpha}$, COX-2, IL-12, and M-CSF, and also the matrix inflammatory reaction was reduced by marked deceases of MMP-2, MMP-3, and lysozyme. These anti-inflammatory expressions were consistently found until DCE-10 treatment. Therefore, it is presumed that DCE may have dynamic effects of innate immunity activation and pro-inflammation suppression on RAW264.7 cells simultaneously. These effects were consistently found in the highest dose of coffee, DCE-10 (equivalent to 10 cups of coffee a day in man), that might imply the small coffee molecules were accumulated in RAW 264.7 cells after DCE-10 treatment and produce synergistic cytokine effects for innate immunity activation and anti-inflammatory reaction concurrently.

비장, 골수세포 및 대식세포에서의 Macrophage Inflammatory $Protein-1{\alpha}(MIP-1{\alpha})$ 에 관한 연구 (STUDIES ON THE MACROPHAGE INFLAMMATORY $PROTEIN-1{\alpha}$ IN BONE MARROW, SPLEEN, AND MACROPHAGE)

  • 송인택;오귀옥;김형섭
    • Journal of Periodontal and Implant Science
    • /
    • 제23권1호
    • /
    • pp.48-55
    • /
    • 1993
  • Macrophage inflammatory $protein-1{\alpha}(MIP-1{\alpha})$ from activated T cell or macrophage, which is small inducible cytokine of unkown biological function, has been shown to display inflammation chemokinetic activities, as well as myelosuppressive effect on more immature progenitor cells. In this paper we show the $MIP-1{\alpha}$ mRNA expression and the presence of $MIP-1{\alpha}$ binding sites from murine macrophage cell line RAW 264.7, and primary cells of mouse bone marrow and spleen. $MIP-1{\alpha}$ mRNA was induced from LPS-stimulated RAW 264.7, but not inhibited by cyclosporin A treatment, and also was expressed from mouse splenocyted and bone marrow cell which were not increased by ferritin or lactoferrin treatment. The results of receptor binding assay showed that radiolabeled RAW 264.7 cell with kd value of 0.91 nM, and binding sites per cell of 378. bone marrow cell and splenocyte also appeared to have $MIP-1{\alpha}$ binding sites 33 and 11 per cell, respectiviely.

  • PDF

Potentiation of Innate Immunity by β-Glucans

  • Seong, Su-Kyoung;Kim, Ha-Won
    • Mycobiology
    • /
    • 제38권2호
    • /
    • pp.144-148
    • /
    • 2010
  • $\beta$-Glucans have been known to exhibit antitumor activities by potentiating host immunity by an unknown mechanism. The C-type lectin dectin-1, a $\beta$-glucan receptor, is found on the macrophage and can recognize various $\beta$-glucans. Previously, we demonstrated the presence of $\beta$-glucan receptor, dectin-1, on the Raw 264.7 cells as well as on murine mucosal organs, such as the thymus, the lung, and the spleen. In order to investigate immunopotentiation of innate immunity by $\beta$-glucan, we stimulated a murine macrophage Raw 264.7 cell line with $\beta$-glucans from Pleurotus ostreatus, Saccharomyces cerevisiae, and Laminaria digitata. Then, we analyzed cytokines such as tumor necrosis factor (TNF)-$\alpha$ and interleukin (IL)-6 by reverse transcription-polymerase chain reaction (RT-PCR). In addition we analyzed gene expression patterns in $\beta$-glucan-treated Raw 264.7 cells by applying total mRNA to cDNA microarray to investigate the expression of 7,000 known genes. When stimulated with $\beta$-glucans, the macrophage cells increased TNF-$\alpha$ expression. When co-stimulation of the cells with $\beta$-glucan and lipopolysaccharide (LPS), a synergy effect was observed by increased TNF-$\alpha$ expression. In IL-6 expression, any of the $\beta$-glucans tested could not induce IL-6 expression by itself. However, when co-stimulation occurred with $\beta$-glucan and LPS, the cells showed strong synergistic effects by increased IL-6 expression. Chip analysis showed that $\beta$-glucan of P. ostreatus increased gene expressions of immunomodulating gene families such as kinases, lectin associated genes and TNF-related genes in the macrophage cell line. Induction of TNF receptor expression by FACS analysis was synergized only when co-stimulated with $\beta$-glucan and LPS, not with $\beta$-glucan alone. From these data, $\beta$-glucan increased expressions of immunomodulating genes and showed synergistic effect with LPS.

Effects of Gyejijakyakjimo-tang extract on inhibition of PGE2 synthesis and NO production in murine raw 264.7 macrophage cells

  • Park, Kyoung-Su;Hwang, Mi-Ja;Nam, Ki-Bong;Ryu, Ji-Mi;Chung, Seok-Hee
    • Advances in Traditional Medicine
    • /
    • 제7권5호
    • /
    • pp.509-517
    • /
    • 2008
  • Gyejijakyakjimo-tang is a multi-herbal formula that is composed of nine medicinal herbs. Gyejijakyakjimo-tang has been reported to have antipyretic and analgesic effects. Gyejijakyakjimo-tang has traditionally been used for goat and rheumatoid arthritis. However, analgesic and antiinflammatory effects of Gyejijakyakjimo-tang has not been clarified yet. In this study, we investigated the analgesic and anti-inflammatory effect of the aqueous extract of Gyejijakyakjimo-tang. We evaluated the aqueous extract of Gyejijakyakjimo-tang on Lipopolysaccharide (LPS)-induced inflammation in murine raw 264.7 macrophage cells. For this study, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, reverse transcription-polymerase chain reaction (RT-PCR), prostaglandin $E_2$ ($PGE_2$) immunoassay, and nitric oxide (NO) detection were performed. Gyejijakyakjimo-tang suppressed $PGE_2$ synthesis and NO production by inhibiting the LPS-induced expressions of COX-2 and iNOS mRNA in murine raw 264.7 macrophage cells. These results show that Gyejijakyakjimo-tang has the analgesic and anti-inflammatory effect by mostly suppressing COX-2 and iNOS expressions, and resulting in the inhibition of $PGE_2$ synthesis and NO production.

용담의 RAW 264.7 세포주에서의 Nitric Oxide 생성 저해물질 (A Nitric Oxide Synthesis Inhibitor from the Roots of Gentiana scabra in RAW 264.7 Cells)

  • 김나영;강태현;김도훈;김윤철
    • 생약학회지
    • /
    • 제30권2호
    • /
    • pp.173-176
    • /
    • 1999
  • Bioassay-guided fractionation of a $H_2O$ extract of the roots of Gentiana scabra has furnished 5-(hydroxymethyl)-2-furfural (1) as an inhibitory compound for nitric oxide (NO) production in murine macrophage RAW 264.7 cells stimulated with $interferon-{\gamma}$ plus lipopolysaccharide. Compound 1 showed the moderate inhibition of NO production with $IC_{50}$ value of $803\;{\mu}M$.

  • PDF

Activation of Murine Macrophage Cell Line RAW 264.7 by Korean Propolis

  • Han, Shin-Ha;Sung, Ki-Hyun;Yim, Dong-Sool;Lee, Sook-Yeon;Cho, Kyung-Hae;Lee, Chong-Kil;Ha, Nam-Joo;Kim, Kyung-Jae
    • Archives of Pharmacal Research
    • /
    • 제25권6호
    • /
    • pp.895-902
    • /
    • 2002
  • Monocytes and macrophages playa major role in defense mechanism of the host response to tumor, in part through the secretion of several potent products and macrophage cytokines. Monocytes and tissue macro phages produce at least two groups of protein mediators of inflammation, interleukin 1 (IL-1) and tumor necrosis factor (TNF). Recent studies emphasizes that TNF and IL-1 modulate the inflammatory function of endothelial cells, leukocytes, and fibroblasts. In this study, our work is directed toward studying the in vitro effects of Korean propolis on the ability to induce cellular and secretory responses in murine macrophage cell line, RAW 264.7. It was found that Water Extract of Korean Propolis (WEP) could activate macro phages by producing cytokines. The production of the macrophage cytokines, IL-1 and TNF-$\alpha$, by RAW 264.7 treated with WEP was examined from 2.5 $\mu\textrm{g}$/ml up to 25 $\mu\textrm{g}$/ml with dose dependent manner. Nitric oxide (NO) production was also increased when cells were exposed to combination of LPS and WEP from 2.5 $\mu\textrm{g}$/ml up to 25 $\mu\textrm{g}$/ml. At high dose of WEP (50 to 100 $\mu\textrm{g}$/ml) used to prescribe for anti-inflammatory and analgesic medicine showed inhibition of NO production in LPS-stimulated macrophage. Besides cytokine production, NO release, surface molecule expression and cell morphologic antigen expression were increased in response to the stimulation by WEP. These results suggested WEP may function through macrophage activation.

Inhibition of Nitric Oxide Synthesis by Methanol and Butanol Extracts of Euonymus Alatus (Thunb.) Sieb in Murine Macrophages

  • Lee Hyo-Hyun;Park Young-Soo;Kim Ra-Young;Kim Dong-Il;Lee Tae-Kyun
    • 대한한의학회지
    • /
    • 제26권1호
    • /
    • pp.26-36
    • /
    • 2005
  • Objective : Many traditional herbal remedies exhibit several beneficial effects including anti-inflammation. Euonymus alatus (Thunb.) Sieb (EA), known as Gui jun woo in Korea, has long been used in folk medicine to regulate Qi (bodily energy) and blood circulation, relieve pain, eliminate stagnant blood, and treat dysmenorrhea in oriental countries. The exact mechanism of the anti-inflammatory action of Euonymus alatus (Thunb.) Sieb (EA), however, has not been determined. Methods: Since there is increasing evidence that nitric oxide (NO) plays a crucial role in the pathogenesis of inflammatory diseases, this study was undertaken to address whether the methanol (MeOH) extract and its fractions of the bark of EA could modulate the expression of inducible NO synthase (iNOS) in thioglycollate-elicited murine peritoneal macrophages and murine macrophage cell line, RA W264.7 cells. Results: Stimulation of the peritoneal macrophages and RAW264.7 cells with $interferon-\gamma\;(IFN-\gamma)$ and lipopolysaccharide (LPS) resulted in increased production of NO in the medium. However, the butanol (BuOH) fraction of the MeOH extract of EA barks showed marked inhibition of NO synthesis in a dose-dependent manner. The inhibition of NO synthesis was reflected in the decreased amount of iNOS protein, as determined by Western blotting. The BuOH fraction did not affect the viability of RA W264.7 cells, as assessed by methylthiazol-2-yl-2, 5-diphenyl tetrazolium bromide (MTT) assay; rather, it reduced endogenous NO-induced apoptotic cell death via inhibition of NO synthesis in RAW264.7 cells. On the other hand, the MeOH and BuOH fraction showed no inhibitory effect on the synthesis of NO by RAW264.7 cells, when iNOS was already expressed by the stimulation with $IFN-\gamma$ and LPS. Conclusion: Collectively, these results demonstrate that the MeOH and BuOH fraction inhibits NO synthesis by inhibition of the induction of iNOS in murine macrophages.

  • PDF

Immune-Enhancing Effects of Green Lettuce (Lactuca sativa L.) Extracts through the TLR4-MAPK/NF-κB Signaling Pathways in RAW264.7 Macrophage Cells

  • Seo, Hyun-Ju;Jeong, Jin Boo
    • 한국자원식물학회지
    • /
    • 제33권3호
    • /
    • pp.183-193
    • /
    • 2020
  • Recently, as a natural substance has been emphasized interest in research to enhance the immune function. Green lettuce (Lactuca sativa L.) is a popular vegetable used fresh and it contains various phytochemicals and antioxidant compounds, and has been reported to have various physiological activities such as antibacterial, antioxidant, antitumor and anti-mutagenic. However, only a few studies have investigated on the mechanism of action of immune-enhancing activity of lettuce. Therefore, in this study, the immunomodulatory activities and potential mechanism of action of Green lettuce extracts (GLE) were evaluated in the murine macrophage cell line RAW264.7. GLE significantly increased NO levels by RAW264.7 cells, as well as expressions of immunomodulators such as iNOS, COX-2, IL-1β, IL-6, IL-12, TNF-α and MCP-1. Although GLE activated ERK1/2, p38, JNK and NF-κB, GLE-mediated expressions of immunomodulators was dependent on p38, JNK and NF-κB. In addition, TLR4 inhibition blocked GLE-mediated expressions of immunomodulators and activation of p38, JNK and NF-κB. Taken together, these results demonstrated that TLR4-MAPK/NF-κB signalling pathways participated in GLE-induced macrophage activation and GLE could be developed as a potential immunomodulating functional food.