• 제목/요약/키워드: municipal wastewater treatment

검색결과 209건 처리시간 0.022초

Nitrate Removal by Pseudomonas fluorescens K4 Isolated from a Municipal Sewage Treatment Plant

  • Lee, O-Mi;Oh, Jong-Hyeok;Hwang, Doo-Seong;Choi, Yun-Dong;Chung, Un-Soo;Park, Jin-Ho;Kim, Min-Ju;Jeong, Seong-Yun;Lee, Sang-Joon
    • 한국환경과학회지
    • /
    • 제16권11호
    • /
    • pp.1219-1223
    • /
    • 2007
  • The removal of nitrogen compounds from a wastewater is essential and it is often accomplished by bio-logical process. An aerobic nitrate-removing bacterium was isolated from a municipal sewage treatment plant and soil. On the basis of its morphological, cultural and physiological characteristics and 16S rRNA sequencing data, this strain was identified as Pseudomonas fluorescens, and named as P. fluorescens K4. The optimal conditions of the initial pH and temperature of media for its growth were $7.0{\sim}8.0$ and $30^{\circ}C$, respectively. P. fluorescens K4 was able to remove 99.9% of nitrate after 24 h in a culture. The strain could grow with a nitrate concentration up to 800 mg/l and was able to remove 99.9% of nitrate after 104 h of incubation. The optimal electron donor was sodium citrate for a nitrate removal. The strain K4 showed a capability of a complete nitrate removal when the initial C/N ratio was 1.0. An effect of the initial seed concentration was observed for a cell of 10% (v/v) for a nitrate removal. Especially P. fluorescens K4 could completely remove 200 mg/l ammonium for 3 days.

생활폐기물 소각시설의 운영 실태 분석을 통한 에너지회수 효율 개선방안 검토 (A Study on Improvement Measures of Energy Recovery Efficiency through Analysis of Operational Status of Municipal Solid Waste Incineration Facilities)

  • 박상진;배재근
    • 한국폐기물자원순환학회지
    • /
    • 제35권8호
    • /
    • pp.762-769
    • /
    • 2018
  • This study was carried out to examine the improvement plan by analyzing the characteristics of imported wastes, operation rate, and benefits of energy recovery for incineration facilities with a treatment capacity greater than 50 ton/day. The incineration facility capacity increased by 3,280 tons over 15 years, and the actual incineration rate increased to 2,783 ton/day. The operation rate dropped to 76% in 2010 and then rose again to 81% in 2016. The actual calorific value compared to the design calorific value increased by 33.8% from 94.6% in 2002 to 128.4% in 2016. The recovery efficiency decreased by 29% over 16 years from 110.7% to 81.7% in 2002. Recovery and sales of thermal energy from the incinerator (capacity 200 ton/day) dominated the operation cost, and operating income was generated by energy sales (such as power generation and steam). The treatment capacity increased by 11% to 18% after the recalculation of the incineration capacity and has remained consistently above 90% in most facilities to date. In order to solve the problem of high calorific value waste, wastewater, leachate, and clean water should be mixed and incinerated, and heat recovery should be performed through a water-cooled grate and water cooling wall installation. Twenty-five of the 38 incineration facilities (about 70%) are due for a major repair. After the main repair of the facility, the operation rate is expected to increase and the operating cost is expected to decline due to energy recovery. Inspection and repair should be carried out in a timely manner to increase incineration and heat energy recovery efficiencies.

기존활성슬러지법으로 운전중인 하수처리장의 탈질$\cdot$탈인 공정 상용화 (Development on the Process for Nitrogen and Phosphorus Removal in Municipal Wastewater Treatment System)

  • 김대명;양익배;김수복;변병결;김영규;권기석;장덕진;장성환;임영택;홍성민;홍민
    • 환경기술인
    • /
    • 제18권통권188호
    • /
    • pp.70-75
    • /
    • 2002
  • 1999년부터 2001년까지 2년동안 G-7 환경공학기술개발사업의 일환으로 CNR공법을 이용한 하수처리장의 탈질$\cdot$탈인을 위한 상용화기술개발연구의 결과를 요약하면 다음과 같다. CNR공법은 우리나라의 일반적인 하수성상에서 6시간의 체류시간에서도 운전관리가 원활하면 동절기와 유기물 부하변동에도 질소를 10mg/l, 인을 1mg/l로 제거 할 수 있는 공법이다. CNR공법은 현재 하수처리장의 활성슬러지조내의 용적과 체류시간을 그

  • PDF

부산시 수자원 확보를 위한 하수처리수 재이용 방안 (Reuse Methods of Treated Sewage for securing Water Resource in Busan)

  • 김정배;문승건;박률
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1232-1237
    • /
    • 2009
  • Recently, we often encounter water shortage problem due to drought during dry season. Although we have built dams and expanded our tap water system greatly to meet the increasing demand of water, this approach has its inherent limitation including environmental destruction in the course of the dam construction. Therefore, this paper is aimed to analyze the water recycling models developed in other countries and modify them to fit into our system. Also the water recycling system in Busan municipal area was analyzed to propose an alternative method for reusing the recycled water from wastewater treatment area.

  • PDF

Growth regime and environmental remediation of microalgae

  • Hammed, Ademola Monsur;Prajapati, Sanjeev Kumar;Simsek, Senay;Simsek, Halis
    • ALGAE
    • /
    • 제31권3호
    • /
    • pp.189-204
    • /
    • 2016
  • Microalgal bioremediation of CO2, nutrients, endocrine disruptors, hydrocarbons, pesticides, and cyanide compounds have evaluated comprehensively. Microalgal mitigation of nutrients originated from municipal wastewaters, surface waters, and livestock wastewaters has shown great applicability. Algal utilization on secondary and tertiary treatment processes might provide unique and elegant solution on the removing of substances originated from various sources. Microalgae have displayed 3 growth regimes (autotrophic, heterotrophic, and mixotrophic) through which different organic and inorganic substances are being utilized for growth and production of different metabolites. There are still some technology challenges requiring innovative solutions. Strain selection investigation should be directed towards identification of algal that are extremophiles. Understanding and manipulation of metabolic pathways of algae will possible unfold solution to utilization of algae for mitigation of dissolve organic nitrogen in wastewaters.

FC/FS 비율에 의한 분변오염원의 출처파악의 유효성 (Validity of Fecal Pollution Source Tracking using FC/FS Ratio)

  • 박지은;이영옥
    • 한국물환경학회지
    • /
    • 제26권1호
    • /
    • pp.28-34
    • /
    • 2010
  • This study was conducted to assess the validity of fecal coliforms to fecal streptococci ratio (FC/FS) for distinguishing the human from animal origin of fecal pollution in surface water. FC/FS ratio determined in effluent from municipal wastewater and human feces treatment plant (WWTP) and in downstream close to discharge of human feces was above 4 which indicates human origin. However FC/FS ratios determined seasonally in other water zones of the Nakdong River, even in the same sampling site, varied differently (above 4 or less than 0.7) due to different survival time of FC and FS and other environmental factors such as rainfall in watershed. Compared to other season, FC/FS ratios in winter were much lower regardless of the origin. It is concluded that the FC/FS ratio determined in surface water is not always valid for determining the origin of fecal pollution.

하수처리장으로 부터의 질소제거 (Nitrogen Removal from Municipal Waste Water Treatment Plants)

  • 최의소
    • 수도
    • /
    • 통권69호
    • /
    • pp.23-46
    • /
    • 1994
  • 하수처리장으로부터의 질소제거는 과거 3차 처리의 개념을 토대로 시설비가 고가로 소요되었으나 현재는 2차 처리시에 탄소제거와 함께 질소를 제거하는 개념으로 바뀌어지고 있다. 또한 질소제거는 탄소제거만에 의한 수질보호 차원에서 암모니아 독성을 제거하며 질소산화에 의한 추가 산소소모를 감소시키는 효과를 기대할 수 있다. 2차 처리시설에 의한 질소제거는 약 6%의 시설비와 연간 유지관리비의 증가에 불과하다. 질소제거는 하천이나 호소수의 수질개선뿐만 아니라 독성제거와 산소공급 내지 산소결핍 가능성을 저하시키며 하수처리장의 수질을 향상시킨다. 따라서 앞으로 질소제거는 모든 하수처리장의 2차 처리시설에 적용이 되리라는 것이 국제적인 추세이다. 하수처리장이 계속해서 신설되고 있는 우리나라로서는 이러한 개념을 되도록 빨리 받아들여 뒤늦게 질소제거를 수행함에 따르는 추가 비용의 낭비를 최소화 시키는 것이 현명하리라 생각된다.

  • PDF

지하수자원의 환경적으로 지속가능한 개발 방안 (Schemes for the Environmentally Sound and Sustainable Development of Groundwater Resources)

  • 홍상표;김정욱
    • 환경영향평가
    • /
    • 제5권2호
    • /
    • pp.49-57
    • /
    • 1996
  • On the basis of sustainable long-term water resources planning, the development of ground water resources should be interlocked with the surface water development In considering the intertemporal equity, overpumping of groundwater may diminish or eliminate the groundwater resources stock of post-generations. Regulatory landuse zoning for groundwater resources recharge area is indispensable measures to prevent groundwater pollution. Adequate treatment of polluted water from various sources such as municipal sewage, industrial wastewater, landfill site leachate, and abandoned boring wells, is also necessary for groundwater protection. To preserve groundwater resources as common property goods, groundwater use tax should be imposed upon the large scale groundwater use. Finally, the establishment of groundwater development license system is recommended to achieve the social optimal production and to avoid external diseconomy.

  • PDF

생하수의 퍼클로레이트 생분해 특성 (Bioreduction Characteristics of Perchlorate in Raw Sewage)

  • 홍성환;최혁순
    • 한국수처리학회지
    • /
    • 제26권6호
    • /
    • pp.81-87
    • /
    • 2018
  • This research was done to investigate the bioreduction characteristics of perchlorate in raw sewage because sewage contains biodegradable organics and various microorganisms for biological perchlorate reduction. Two different types of sewage were tested for biological perchlorate reduction in the flasks. Sewage A was collected from the screening equipment and sewage B was collected from the primary settlement in the municipal wastewater treatment facilities. Perchlorate was completely reduced within 72hours from 8.2 and 10.4 mg/L in the sewage A and sewage B flask tests. When perchlorate and nitrate were added in sewage A, both perchlorate and nitrate were reduced. However, perchlorate and nitrate removal rates were 9.3% and 64.0% at 72hours in sewage B. Perchlorate reduction was significantly inhibited by high salinity(0.5% NaCl) in the sewage A and B. These results showed the sewage has potential for the biological perchlorate reduction in the sewage pipe.

Nitrification of low concentration ammonia nitrogen using zeolite biological aerated filter (ZBAF)

  • Kim, Jin-Su;Lee, Ji-Young;Choi, Seung-Kyu;Zhu, Qian;Lee, Sang-Ill
    • Environmental Engineering Research
    • /
    • 제25권4호
    • /
    • pp.554-560
    • /
    • 2020
  • This study focuses on nitrification through a biological aerated filter (BAF) that is filled with a zeolite medium at low concentrations of ammonia. The zeolite medium consists of natural zeolite powder. The BAF is operated under two types of media, which are a ball-type zeolite medium and expanded poly propylene (EPP) medium. Nitrification occurred in the zeolite BAF (ZBAF) when the influent concentration of ammonia nitrogen was 3 mg L-1, but the BAF that was filled with an EPP medium did not experience nitrification. The ammonia nitrogen removal efficiency of ZBAF was 63.38% and the average nitrate nitrogen concentration was 1.746 mg/L. The ZBAF was tested again after a comparison experiment to treat pond water, and municipal wastewater mixed pond water. The ZBAF showed remarkable ammonia-nitrogen treatment at low concentration and low temperature. During this period, the average ammonia nitrogen removal efficiency was 64.56%. Especially, when water temperature decreased to 4.7℃, ammonia nitrogen removal efficiency remained 79%. On the other hand, the chemical-oxygen demand (COD) and phosphorus-removal trends were different. The COD and phosphorus did not show as efficient treatment as the ammonia-nitrogen treatment.