• 제목/요약/키워드: multivariate time series

검색결과 145건 처리시간 0.025초

독립성분분석을 이용한 다변량 시계열 모의 (Multivariate Time Series Simulation With Component Analysis)

  • 이태삼;호세살라스;주하카바넨;노재경
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.694-698
    • /
    • 2008
  • In hydrology, it is a difficult task to deal with multivariate time series such as modeling streamflows of an entire complex river system. Normal distribution based model such as MARMA (Multivariate Autorgressive Moving average) has been a major approach for modeling the multivariate time series. There are some limitations for the normal based models. One of them might be the unfavorable data-transformation forcing that the data follow the normal distribution. Furthermore, the high dimension multivariate model requires the very large parameter matrix. As an alternative, one might be decomposing the multivariate data into independent components and modeling it individually. In 1985, Lins used Principal Component Analysis (PCA). The five scores, the decomposed data from the original data, were taken and were formulated individually. The one of the five scores were modeled with AR-2 while the others are modeled with AR-1 model. From the time series analysis using the scores of the five components, he noted "principal component time series might provide a relatively simple and meaningful alternative to conventional large MARMA models". This study is inspired from the researcher's quote to develop a multivariate simulation model. The multivariate simulation model is suggested here using Principal Component Analysis (PCA) and Independent Component Analysis (ICA). Three modeling step is applied for simulation. (1) PCA is used to decompose the correlated multivariate data into the uncorrelated data while ICA decomposes the data into independent components. Here, the autocorrelation structure of the decomposed data is still dominant, which is inherited from the data of the original domain. (2) Each component is resampled by block bootstrapping or K-nearest neighbor. (3) The resampled components bring back to original domain. From using the suggested approach one might expect that a) the simulated data are different with the historical data, b) no data transformation is required (in case of ICA), c) a complex system can be decomposed into independent component and modeled individually. The model with PCA and ICA are compared with the various statistics such as the basic statistics (mean, standard deviation, skewness, autocorrelation), and reservoir-related statistics, kernel density estimate.

  • PDF

Change points detection for nonstationary multivariate time series

  • Yeonjoo Park;Hyeongjun Im;Yaeji Lim
    • Communications for Statistical Applications and Methods
    • /
    • 제30권4호
    • /
    • pp.369-388
    • /
    • 2023
  • In this paper, we develop the two-step procedure that detects and estimates the position of structural changes for multivariate nonstationary time series, either on mean parameters or second-order structures. We first investigate the presence of mean structural change by monitoring data through the aggregated cumulative sum (CUSUM) type statistic, a sequential procedure identifying the likely position of the change point on its trend. If no mean change point is detected, the proposed method proceeds to scan the second-order structural change by modeling the multivariate nonstationary time series with a multivariate locally stationary Wavelet process, allowing the time-localized auto-correlation and cross-dependence. Under this framework, the estimated dynamic spectral matrices derived from the local wavelet periodogram capture the time-evolving scale-specific auto- and cross-dependence features of data. We then monitor the change point from the lower-dimensional approximated space of the spectral matrices over time by applying the dynamic principal component analysis. Different from existing methods requiring prior information on the type of changes between mean and covariance structures as an input for the implementation, the proposed algorithm provides the output indicating the type of change and the estimated location of its occurrence. The performance of the proposed method is demonstrated in simulations and the analysis of two real finance datasets.

금융시계열 분석을 위한 다변량-GARCH 모형에서 비대칭-CCC의 도입 및 응용 (Asymmetric CCC Modelling in Multivariate-GARCH with Illustrations of Multivariate Financial Data)

  • 박란희;최문선;황선
    • 응용통계연구
    • /
    • 제24권5호
    • /
    • pp.821-831
    • /
    • 2011
  • 다변량-GARCH 분야에서 비대칭모형에 대한 연구는 상대적으로 미진하다 (McAleer 등, 2009). 본 논문에서는 다변량-GARCH 시계열에서 비대칭 모형과 상수 조건부 상관모형(CCC)을 도입하여 모델링하는 방법론에 대해 연구하고 있다. 다변량 비대칭 변동성 모형 적합 방법을 실용적으로 소개하고 있으며 이를 이용하여 국내 다변량 시계열 분석을 상세히 예시하였다.

시계열 수문자료의 비선형 상관관계 (How to Measure Nonlinear Dependence in Hydrologic Time Series)

  • 문영일
    • 한국수자원학회논문집
    • /
    • 제30권6호
    • /
    • pp.641-648
    • /
    • 1997
  • 상관계수가 변수간의 선형 상관관계를 나타내듯이 mutual information은 변수간의비선형 상관관계를 나타내준다. 본 논문에서는 mutual information 추정법으로 다변수 핵 미도함수(multivariate kernel density estimator)를 이용한 방법이 여러 time lags값에 대하여 산정 되었다. 많은 수문자료에서 보여지는 비선형 관계를 Mutual Information으로 확인하여 보았고, 또한 Mutual Information값이 거의 0인 점에서 optimal delay time을 구하여, 하나의 자료로부터 다변수 회귀분석 모델을 만들 때 이용할 수 있다.

  • PDF

풍력발전 설비 효율화를 위한 다변량 분석을 이용한 풍력발전단지 단기 출력 예측 방법 (Short-term Wind Farm Power Forecasting Using Multivariate Analysis to Improve Wind Power Efficiency)

  • 위영민
    • 조명전기설비학회논문지
    • /
    • 제29권7호
    • /
    • pp.54-61
    • /
    • 2015
  • This paper presents short-term wind farm power forecasting method using multivariate analysis and time series. Based on factor analysis, the proposed method makes new independent variables which newly composed by raw independent variables such as wind speed, ramp rate, wind power. Newly created variables are used in the time series model for forecasting wind farm power. To demonstrate the improved accuracy, the proposed method is compared with persistence model commonly used as reference in wind power forecasting using data from Jeju Island. The results of case studies are presented to show the effectiveness of the proposed forecasting method.

다변량 시계열 모형을 이용한 항공 수요 예측 연구 (A Study on Air Demand Forecasting Using Multivariate Time Series Models)

  • 허남균;정재윤;김삼용
    • 응용통계연구
    • /
    • 제22권5호
    • /
    • pp.1007-1017
    • /
    • 2009
  • 본 연구는 최근에 활발히 연구가 진행 중인 항공수요 예측 분야에서 사용되는 계절형 ARIMA 모형과 다변량 계절형 시계열 모형과의 성능을 비교한 것이다. 본 연구에서는 국제 여객 수요와 국제 화물 수요 예측을 위하여 실제 자료를 이용하여 비교한 결과 다변량 계절형 시계열 모형이 예측의 정확도 면에서 기존의 일변량 모형보다 우수함을 보였다.

상관된 시계열 자료 모니터링을 위한 다변량 누적합 관리도 (Multivariate CUSUM Chart to Monitor Correlated Multivariate Time-series Observations)

  • 이규영;이미림
    • 품질경영학회지
    • /
    • 제49권4호
    • /
    • pp.539-550
    • /
    • 2021
  • Purpose: The purpose of this study is to propose a multivariate CUSUM control chart that can detect the out-of-control state fast while monitoring the cross- and auto- correlated multivariate time series data. Methods: We first build models to estimate the observation data and calculate the corresponding residuals. After then, a multivariate CUSUM chart is applied to monitor the residuals instead of the original raw observation data. Vector Autoregression and Artificial Neural Net are selected for the modelling, and Separated-MCUSUM chart is selected for the monitoring. The suggested methods are tested under a number of experimental settings and the performances are compared with those of other existing methods. Results: We find that Artificial Neural Net is more appropriate than Vector Autoregression for the modelling and show the combination of Separated-MCUSUM with Artificial Neural Net outperforms the other alternatives considered in this paper. Conclusion: The suggested chart has many advantages. It can monitor the complicated multivariate data with cross- and auto- correlation, and detects the out-of-control state fast. Unlike other CUSUM charts finding their control limits by trial and error simulation, the suggested chart saves lots of time and effort by approximating its control limit mathematically. We expect that the suggested chart performs not only effectively but also efficiently for monitoring the process with complicated correlations and frequently-changed parameters.

Analysis of Multivariate Financial Time Series Using Cointegration : Case Study

  • Choi, M.S.;Park, J.A.;Hwang, S.Y.
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권1호
    • /
    • pp.73-80
    • /
    • 2007
  • Cointegration(together with VARMA(vector ARMA)) has been proven to be useful for analyzing multivariate non-stationary data in the field of financial time series. It provides a linear combination (which turns out to be stationary series) of non-stationary component series. This linear combination equation is referred to as long term equilibrium between the component series. We consider two sets of Korean bivariate financial time series and then illustrate cointegration analysis. Specifically estimated VAR(vector AR) and VECM(vector error correction model) are obtained and CV(cointegrating vector) is found for each data sets.

  • PDF

Unsupervised Clustering of Multivariate Time Series Microarray Experiments based on Incremental Non-Gaussian Analysis

  • Ng, Kam Swee;Yang, Hyung-Jeong;Kim, Soo-Hyung;Kim, Sun-Hee;Anh, Nguyen Thi Ngoc
    • International Journal of Contents
    • /
    • 제8권1호
    • /
    • pp.23-29
    • /
    • 2012
  • Multiple expression levels of genes obtained using time series microarray experiments have been exploited effectively to enhance understanding of a wide range of biological phenomena. However, the unique nature of microarray data is usually in the form of large matrices of expression genes with high dimensions. Among the huge number of genes presented in microarrays, only a small number of genes are expected to be effective for performing a certain task. Hence, discounting the majority of unaffected genes is the crucial goal of gene selection to improve accuracy for disease diagnosis. In this paper, a non-Gaussian weight matrix obtained from an incremental model is proposed to extract useful features of multivariate time series microarrays. The proposed method can automatically identify a small number of significant features via discovering hidden variables from a huge number of features. An unsupervised hierarchical clustering representative is then taken to evaluate the effectiveness of the proposed methodology. The proposed method achieves promising results based on predictive accuracy of clustering compared to existing methods of analysis. Furthermore, the proposed method offers a robust approach with low memory and computation costs.

차원축소를 통한 다변량 시계열의 변동성 분석 및 응용 (Volatility Analysis for Multivariate Time Series via Dimension Reduction)

  • 송유진;최문선;황선영
    • Communications for Statistical Applications and Methods
    • /
    • 제15권6호
    • /
    • pp.825-835
    • /
    • 2008
  • 계량경제학 분야에서 널리 쓰이는 MGARCH(multivariate GARCH)모형은 여러개의 시계열자료들의 변동성을 함께 모형화한다. 그러나 변수가 많아질수록 추정해야 할 모수의 수가 급격하게 늘어나는 문제점이 있다. 본 연구에서는 인자 모형을 통해 자료의 차원을 축소시킴로써 이러한 문제를 해결하고자 하였다. 국내의 주가수익률 자료에 통계적 인자 모형과 fundamental factor model을 적용하여 각각의 의미 있는 인자들을 얻은 후 이를 MGARCH모형에 적합시켰다. 또한 두 인자모형을 바탕으로 얻어진 최종 모형들의 MSE, MAD와 VaR(Value at Risk)를 계산하여 예측력을 비교하고자 한다.