• Title/Summary/Keyword: multivariate statistics

Search Result 655, Processing Time 0.02 seconds

Multivariate EWMA Charts for Simultaneously Monitoring both Means and Variances

  • Cho, Gyo Young;Chang, Duk Joon
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.3
    • /
    • pp.715-723
    • /
    • 1997
  • Multivariate control statistics to simultaneously monitor both means and variances for several quality variables under multivariate normal process are proposed. Performances of the proposed multivariate charts are evaluated in terms of average run length(ARL). Multivariate Shewhart chart is also proposed to compare the performances of multivariate exponentially weighted moving average(EWMA) charts. A numerical comparison shows that multivariate EWMA charts are more efficient than multivariate Shewhart chart for small and moderate shifts and multivariate EWMA scheme based on accumulate-combine approach is more efficient than corresponding multivariate EWMA chart based on combine-accumulate approach.

  • PDF

Multivariate Control Charts for Means and Variances with Variable Sampling Intervals

  • Kim, Jae-Joo;Cho, Gyo-Young;Chang, Duk-Joon
    • Journal of Korean Society for Quality Management
    • /
    • v.22 no.1
    • /
    • pp.66-81
    • /
    • 1994
  • Several sample statistics to simultaneously monitor both means and variances for multivariate quality characteristics under multivariate normal process are proposed. Performances of multivariate Shewhart schemes and cumulative sum(CUSUM) schemes are evaluated for matched fixed sampling interval(FSI) and variable sampling interval(VSI) feature. Numerical results show that multivariate CUSUM charts are more efficient than Shewhart charts for small or moderate shifts and VSI feature is more efficient than FSI feature.

  • PDF

A Goodness-of-Fit Test for Multivariate Normal Distribution Using Modified Squared Distance

  • Yim, Mi-Hong;Park, Hyun-Jung;Kim, Joo-Han
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.4
    • /
    • pp.607-617
    • /
    • 2012
  • The goodness-of-fit test for multivariate normal distribution is important because most multivariate statistical methods are based on the assumption of multivariate normality. We propose goodness-of-fit test statistics for multivariate normality based on the modified squared distance. The empirical percentage points of the null distribution of the proposed statistics are presented via numerical simulations. We compare performance of several test statistics through a Monte Carlo simulation.

Multivariate CUSUM control charts for monitoring the covariance matrix

  • Choi, Hwa Young;Cho, Gyo-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.2
    • /
    • pp.539-548
    • /
    • 2016
  • This paper is a study on the multivariate CUSUM control charts using three different control statistics for monitoring covariance matrix. We get control limits and ARLs of the proposed multivariate CUSUM control charts using three different control statistics by using computer simulations. The performances of these proposed multivariate CUSUM control charts have been investigated by comparing ARLs. The purpose of control charts is to detect assignable causes of variation so that these causes can be found and eliminated from process, variability will be reduced and the process will be improved. We show that the charts based on three different control statistics are very effective in detecting shifts, especially shifts in covariances when the variables are highly correlated. When variables are highly correlated, our overall recommendation is to use the multivariate CUSUM control charts using trace for detecting changes in covariance matrix.

Multivariate Test based on the Multiple Testing Approach

  • Hong, Seung-Man;Park, Hyo-Il
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.5
    • /
    • pp.821-827
    • /
    • 2012
  • In this study, we propose a new nonparametric test procedure for the multivariate data. In order to accommodate the generalized alternatives for the multivariate case, we construct test statistics via-values with some useful combining functions. Then we illustrate our procedure with an example and compare efficiency among the combining functions through a simulation study. Finally we discuss some interesting features related with the new nonparametric test as concluding remarks.

NONPARAMETRIC ONE-SIDED TESTS FOR MULTIVARIATE AND RIGHT CENSORED DATA

  • Park, Hyo-Il;Na, Jong-Hwa
    • Journal of the Korean Statistical Society
    • /
    • v.32 no.4
    • /
    • pp.373-384
    • /
    • 2003
  • In this paper, we formulate multivariate one-sided alternatives and propose a class of nonparametric tests for possibly right censored data. We obtain the asymptotic tail probability (or p-value) by showing that our proposed test statistics have asymptotically multivariate normal distributions. Also, we illustrate our procedure with an example and compare it with other procedures in terms of empirical powers for the bivariate case. Finally, we discuss some properties of our test.

A Note on the Characteristic Function of Multivariate t Distribution

  • Song, Dae-Kun;Park, Hyoung-Jin;Kim, Hyoung-Moon
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.1
    • /
    • pp.81-91
    • /
    • 2014
  • This study derives the characteristic functions of (multivariate/generalized) t distributions without contour integration. We extended Hursts method (1995) to (multivariate/generalized) t distributions based on the principle of randomization and mixtures. The derivation methods are relatively straightforward and are appropriate for graduate level statistics theory courses.

Remarks on the Use of Multivariate Skewness and Kurtosis for Testing Multivariate Normality (정규성 검정을 위한 다변량 왜도와 첨도의 이용에 대한 고찰)

  • 김남현
    • The Korean Journal of Applied Statistics
    • /
    • v.17 no.3
    • /
    • pp.507-518
    • /
    • 2004
  • Malkovich & Afifi (1973) generalized the univariate skewness and kurtosis to test a hypothesis of multivariate normality by use of the union-intersection principle. However these statistics are hard to compute for high dimensions. We propose the approximate statistics to them, which are practical for a high dimensional data set. We also compare the proposed statistics to Mardia(1970)'s multivariate skewness and kurtosis by a Monte Carlo study.

MULTIPLE DELETION MEASURES OF TEST STATISTICS IN MULTIVARIATE REGRESSION

  • Jung, Kang-Mo
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.679-688
    • /
    • 2008
  • In multivariate regression analysis there exist many influence measures on the regression estimates. However it seems to be few of influence diagnostics on test statistics in hypothesis testing. Case-deletion approach is fundamental for investigating influence of observations on estimates or statistics. Tang and Fung (1997) derived single case-deletion of the Wilks' ratio, Lawley-Hotelling trace, Pillai's trace for testing a general linear hypothesis of the regression coefficients in multivariate regression. In this paper we derived more extended form of those measures to deal with joint influence among observations. A numerical example is given to illustrate the effect of joint influence on the test statistics.

  • PDF

Multivariate Control Charts for Several Related Quality Characteristics

  • Chang, Duk-Joon;Shin, Jae-Kyoung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.2
    • /
    • pp.467-476
    • /
    • 2005
  • Multivariate control charts for monitoring mean vector of several related quality variables with combine-accumulate approach and accumulate-combine apprach were investigated. Shewhart chart is also proposed to compare the performances of CUSUM and EWMA charts. Numerical comparisons show that CUSUM and EWMA charts are more efficient than Shewhart chart for small or moderate shifts, and multivariate charts based on accumulate- combine approach is more efficient than corresponding multivariate charts based on combine-accumulate approach.

  • PDF