• Title/Summary/Keyword: multivariate nonparametric regression

Search Result 12, Processing Time 0.016 seconds

A study on the multivariate sliced inverse regression (다변량 분할 역회귀모형에 관한 연구)

  • 이용구;이덕기
    • The Korean Journal of Applied Statistics
    • /
    • v.10 no.2
    • /
    • pp.293-308
    • /
    • 1997
  • Sliced inverse regression is a method for reducing the dimension of the explanatory variable X without going through any parametric or nonparametric model fitting process. This method explores the simplicity of the inverse view of regression; that is, instead of regressing the univariate output varable y against the multivariate X, we regress X against y. In this article, we propose bivariate sliced inverse regression, whose method regress the multivariate X against the bivariate output variables $y_1, Y_2$. Bivariate sliced inverse regression estimates the e.d.r. directions of satisfying two generalized regression model simultaneously. For the application of bivariate sliced inverse regression, we decompose the output variable y into two variables, one variable y gained by projecting the output variable y onto the column space of X and the other variable r through projecting the output variable y onto the space orthogonal to the column space of X, respectively and then estimate the e.d.r. directions of the generalized regression model by utilize two variables simultaneously. As a result, bivariate sliced inverse regression of considering the variable y and r simultaneously estimates the e.d.r. directions efficiently and steadily when the regression model is linear, quadratic and nonlinear, respectively.

  • PDF

Implicit Treatment of Technical Specification and Thermal Hydraulic Parameter Uncertainties in Gaussian Process Model to Estimate Safety Margin

  • Fynan, Douglas A.;Ahn, Kwang-Il
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.684-701
    • /
    • 2016
  • The Gaussian process model (GPM) is a flexible surrogate model that can be used for nonparametric regression for multivariate problems. A unique feature of the GPM is that a prediction variance is automatically provided with the regression function. In this paper, we estimate the safety margin of a nuclear power plant by performing regression on the output of best-estimate simulations of a large-break loss-of-coolant accident with sampling of safety system configuration, sequence timing, technical specifications, and thermal hydraulic parameter uncertainties. The key aspect of our approach is that the GPM regression is only performed on the dominant input variables, the safety injection flow rate and the delay time for AC powered pumps to start representing sequence timing uncertainty, providing a predictive model for the peak clad temperature during a reflood phase. Other uncertainties are interpreted as contributors to the measurement noise of the code output and are implicitly treated in the GPM in the noise variance term, providing local uncertainty bounds for the peak clad temperature. We discuss the applicability of the foregoing method to reduce the use of conservative assumptions in best estimate plus uncertainty (BEPU) and Level 1 probabilistic safety assessment (PSA) success criteria definitions while dealing with a large number of uncertainties.