• Title/Summary/Keyword: multivariate long memory process

Search Result 3, Processing Time 0.017 seconds

Outlier detection for multivariate long memory processes (다변량 장기 종속 시계열에서의 이상점 탐지)

  • Kim, Kyunghee;Yu, Seungyeon;Baek, Changryong
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.3
    • /
    • pp.395-406
    • /
    • 2022
  • This paper studies the outlier detection method for multivariate long memory time series. The existing outlier detection methods are based on a short memory VARMA model, so they are not suitable for multivariate long memory time series. It is because higher order of autoregressive model is necessary to account for long memory, however, it can also induce estimation instability as the number of parameter increases. To resolve this issue, we propose outlier detection methods based on the VHAR structure. We also adapt the robust estimation method to estimate VHAR coefficients more efficiently. Our simulation results show that our proposed method performs well in detecting outliers in multivariate long memory time series. Empirical analysis with stock index shows RVHAR model finds additional outliers that existing model does not detect.

Global Warming Trend : Further Evidence from Multivariate Long Memory Models of Temperature and Tree Ring Series

  • Chung, Sang-Kuck
    • Environmental and Resource Economics Review
    • /
    • v.9 no.3
    • /
    • pp.515-544
    • /
    • 2000
  • This paper shows that various fractionally integrated univariate and multivariate are remarkably successful in representing annual temperature series and also very long series of tree ring widths, which are often used as a proxy for temperature. The analysis also suggests that human recorded temperature series are not inconsistent with being generated by a stationary, long memory process. From the empirical results, we should be noted that the statistically significant positive trend coefficients may well be due to small sample sizes. These results cast some doubt on the basic assumption that global warming is definitely occurring.

  • PDF

Optimize rainfall prediction utilize multivariate time series, seasonal adjustment and Stacked Long short term memory

  • Nguyen, Thi Huong;Kwon, Yoon Jeong;Yoo, Je-Ho;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.373-373
    • /
    • 2021
  • Rainfall forecasting is an important issue that is applied in many areas, such as agriculture, flood warning, and water resources management. In this context, this study proposed a statistical and machine learning-based forecasting model for monthly rainfall. The Bayesian Gaussian process was chosen to optimize the hyperparameters of the Stacked Long Short-term memory (SLSTM) model. The proposed SLSTM model was applied for predicting monthly precipitation of Seoul station, South Korea. Data were retrieved from the Korea Meteorological Administration (KMA) in the period between 1960 and 2019. Four schemes were examined in this study: (i) prediction with only rainfall; (ii) with deseasonalized rainfall; (iii) with rainfall and minimum temperature; (iv) with deseasonalized rainfall and minimum temperature. The error of predicted rainfall based on the root mean squared error (RMSE), 16-17 mm, is relatively small compared with the average monthly rainfall at Seoul station is 117mm. The results showed scheme (iv) gives the best prediction result. Therefore, this approach is more straightforward than the hydrological and hydraulic models, which request much more input data. The result indicated that a deep learning network could be applied successfully in the hydrology field. Overall, the proposed method is promising, given a good solution for rainfall prediction.

  • PDF