• 제목/요약/키워드: multivariate imputation by chained equations (MICE)

검색결과 5건 처리시간 0.018초

다변수 Bidirectional RNN을 이용한 표층수온 결측 데이터 보간 (Imputation of Missing SST Observation Data Using Multivariate Bidirectional RNN)

  • 신용탁;김동훈;김현재;임채욱;우승범
    • 한국해안·해양공학회논문집
    • /
    • 제34권4호
    • /
    • pp.109-118
    • /
    • 2022
  • 정점 표층 수온 관측 데이터 중 결측 구간의 데이터를 양방향 순환신경망(Bidirectional Recurrent Neural Network, BiRNN) 기법을 이용하여 보간하였다. 인공지능 기법 중 시계열 데이터에 일반적으로 활용되는 Recurrent Neural Networks(RNNs)은 결측 추정 위치까지의 시간 흐름 방향 또는 역방향으로만 추정하기 때문에 장기 결측 구간에는 추정 성능이 떨어진다. 반면, 본 연구에서는 결측 구간 전후의 양방향으로 추정을 하여 장기 결측 데이터에 대해서도 추정 성능을 높일 수 있다. 또한 관측점 주위의 가용한 모든 데이터(수온, 기온, 바람장, 기압, 습도)를 사용함으로써, 이들 상관관계로부터 보간 데이터를 함께 추정하도록 하여 보간 성능을 더욱 높이고자 하였다. 성능 검증을 위하여 통계 기반 모델인 Multivariate Imputation by Chained Equations(MICE)와 기계학습 기반의 Random Forest 모델, 그리고 Long Short-Term Memory(LSTM)을 이용한 RNN 모델과 비교하였다. 7일간의 장기 결측에 대한 보간에 대해서 BiRNN/통계 모델들의 평균 정확도가 각각 70.8%/61.2%이며 평균 오차가 각각 0.28도/0.44도로 BiRNN 모델이 다른 모델보다 좋은 성능을 보인다. 결측 패턴을 나타내는 temporal decay factor를 적용함으로써 BiRNN 기법이 결측 구간이 길어질수록 보간 성능이 기존 방법보다 우수한 것으로 판단된다.

초모집단 모형의 오차가 이분산일 때 무시할 수 없는 무응답에서 편향수정 무응답 대체 (Bias-corrected imputation method for non-ignorable nonresponse with heteroscedasticity in super-population model)

  • 이유진;신기일
    • 응용통계연구
    • /
    • 제37권3호
    • /
    • pp.283-295
    • /
    • 2024
  • 무응답을 적절히 처리하기 위한 많은 방법이 연구되었다. 최근 다수의 무응답 대체법이 개발되고 실질적으로 사용되고 있다. 기존에 발표된 다수의 방법은 MCAR (missing completely at random) 또는 MAR (missing at random) 가정을 사용하고 있다. 그러나 관심변수에 영향을 받는 MNAR (missing not at random) 또는 무시할 수 없는 무응답(non-ignorable non-response; NN)은 편향을 발생시켜 대체 결과의 정확성을 크게 떨어뜨리지만 이에 관한 연구는 상대적으로 미미하다. Lee와 Shin (2022)은 등분산 가정하에서 무시할 수 없는 무응답을 적절히 처리할 수 있는 편향수정 무응답 대체법을 제안하였다. 본 연구에서는 Lee와 Shin (2022)이 제안한 방법을 확장한 무응답 대체법으로 초모집단 모형의 오차가 이분산인 경우에서 편향을 제거함으로써 추정의 정확성을 향상하는 방법을 제안하였다. 모의실험을 이용하여 제안된 방법의 타당성을 확인하였다.

무시할 수 없는 무응답에서 편향 보정을 이용한 무응답 대체 (Bias corrected imputation method for non-ignorable non-response)

  • 이민하;신기일
    • 응용통계연구
    • /
    • 제35권4호
    • /
    • pp.485-499
    • /
    • 2022
  • 표본오차와 비표본오차를 포함하는 총오차(total survey error)를 관리하는 것은 표본설계에서 매우 중요하다. 무응답으로 인해 발생한 비표본오차는 총오차에서 차지하는 비중이 매우 크며 이를 해결하는 방법인 무응답 대체에 관한 다수의 연구가 수행되었다. 최근 전통적 통계학 관련 기법에 추가하여 기계학습 관련 기법을 이용한 무응답 대체법이 다수 연구되고 실질적으로 사용되고 있다. 기존에 발표된 다수의 방법은 MCAR(missing completely at random) 또는 MAR(missing at random) 가정을 사용하고 있다. 그러나 관심변수에 영향을 받는 MNAR(missing not at random) 또는 무시할 수 없는 무응답(non-ignorable non-response; NN)은 편향을 발생시켜 대체 결과의 정확성을 크게 떨어뜨리지만 이에 관한 연구는 상대적으로 미미하다. 본 연구에서는 무시할 수 없는 무응답이 발생한 경우에 적용 가능한 무응답 대체법을 제안하였다. 특히 편향을 추정한 후 이를 제거하는 방법을 이용하여 무응답 대체 결과의 정확성을 향상하는 방법을 제안하였다. 또한, 모의실험을 이용하여 제안된 방법의 타당성을 확인하였다.

불완전한 반복측정 자료의 보정방법 (Methods for Handling Incomplete Repeated Measures Data)

  • 우해봉;윤인진
    • 한국조사연구학회지:조사연구
    • /
    • 제9권2호
    • /
    • pp.1-27
    • /
    • 2008
  • 사회조사 자료를 활용한 통계분석에 있어서 불완전 자료의 문제는 거의 모든 연구자들이 경험하는 하나의 보편적인 문제이다. 불완전 자료의 문제는 특히 패널조사와 같은 종단적 자료를 활용한 연구에 있어서 중요한 이슈가 된다. 본 연구의 목적은 최근까지 이루어진 불완전 자료에 대한 보정방범을 소개하는 것이다. 특히, 본 연구는 패널자괴에서 발생한 불완전 자료의 처리에 대한 관심이 부족한 점을 고려하여 최근까지 이루어진 보정방법들을 반복측정 패널자료 분석에 적용하는데 초점을 맞춘다. 첫째, 본 연구는 불완전 자료에 대한 적절하지 못한 사후처리는 분석결과에 있어서 유의미한 차이로 이어 수 있음을 시사한다. 특히, 분석결과는 반복측정 자료를 사용하는 연구의 경우 불완전 자료의 발생은 궤적의 초기값보다는 시간의 경과에 따른 궤적의 변화를 적절히 추정하는데 문제를 가질 수 있음을 시사하고 있다. 둘째, 분석결과는 완전제거법이나 평균대체법이 EM, FIML, MICE 방법들에 비해 불완전 자료의 처리효과가 상대적으로 떨어짐을 보여준다. 특히, 완전제거법이나 평균대체법과 같은 방법에 비해 최대우도법이나 다중대체법이 갖는 상대적 우위는 MCAR 가정에 비해 보다 현실적인 가정이라고 할 수 있는 MAR 조건하에서 크게 나타난다. 본 연구의 분석결과는 또한 비록 결측치의 발생기제가 MNAR 상황이라고 하더라도 연구자가 결측치의 발생과 관련된 변수들을 보정과정에서 적절하게 활용하면 편의의 상당부분을 감소시킬 수 있음을 시사한다.

  • PDF

경제활동인구조사 자료를 위한 다중대체 방식 연구 (A study on multiple imputation modeling for Korean EAPS)

  • 박민정;배윤종;김정연
    • 응용통계연구
    • /
    • 제34권5호
    • /
    • pp.685-696
    • /
    • 2021
  • 경제활동인구조사는 고용 관련 통계를 생성하는 국가조사로서, 국민의 경활상태(취업/실업/비경활)를 파악하는 것이 주요 목적이다. 정확한 통계를 내기 위해 무응답률을 낮추는 것이 중요하고, 이미 발생한 무응답을 보완하기 위한 방법으로 무응답 대체가 가능하다. 경제활동인구조사는 응답 방식이 순차적 흐름을 따라가기 때문에 구조적인 무응답이 존재한다. 또한 전체 가구원내 무응답 항목이 하나라도 있으면 해당 가족 구성원 전체를 무응답 처리하기에 최종 자료에는 항목 무응답이 아닌 단위 무응답만 존재한다는 특징이 있다. 본 연구에서는 구조적 무응답 이해 및 연계자료를 통한 과거 자료의 활용 등을 통해 기존의 방법보다 효과적인 무응답 대체 모형을 제시하고자 한다. 대체 모형의 성능을 일치도/비일치도를 기반으로 평가한다. 이를 위해, 2019년 11월 경제활동인구조사 자료를 기반으로 모의실험을 실시한다. 총 59,996명의 응답자 중 일부를 랜덤하게 선택한 뒤, 경활상태를 판정하는데 결정적인 설명변수 6개와 경활상태를 무응답 처리한다. 기존 무응답 대체 모형에서 사용하였던 설명 변수 이외에 산업변수와 종사상지위 변수를 추가함으로써 모형을 개선한다. 이는 과거자료의 연계 및 활용을 가정한 것으로, 기존의 모형모다 성능이 향상되는 것을 확인한다. 또한, 경활상태별 무응답자 수에 대한 다양한 시나리오를 고려한다.