• 제목/요약/키워드: multivariate data

검색결과 2,016건 처리시간 0.023초

Nonparametric two sample tests for scale parameters of multivariate distributions

  • Chavan, Atul R;Shirke, Digambar T
    • Communications for Statistical Applications and Methods
    • /
    • 제27권4호
    • /
    • pp.397-412
    • /
    • 2020
  • In this paper, a notion of data depth is used to propose nonparametric multivariate two sample tests for difference between scale parameters. Data depth can be used to measure the centrality or outlying-ness of the multivariate data point relative to data cloud. A difference in the scale parameters indicates the difference in the depth values of a multivariate data point. By observing this fact on a depth vs depth plot (DD-plot), we propose nonparametric multivariate two sample tests for scale parameters of multivariate distributions. The p-values of these proposed tests are obtained by using Fisher's permutation approach. The power performance of these proposed tests has been reported for few symmetric and skewed multivariate distributions with the existing tests. Illustration with real-life data is also provided.

Permutation tests for the multivariate data

  • Park, Hyo-Il;Kim, Ju-Sung
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권4호
    • /
    • pp.1145-1155
    • /
    • 2007
  • In this paper, we consider the permutation tests for the multivariate data under the two-sample problem setting. We review some testing procedures, which are parametric and nonparametric and compare them with the permutation ones. Then we consider to try to apply the permutation tests to the multivariate data having the continuous and discrete components together by choosing some suitable combining function through the partial testing. Finally we discuss more aspects for the permutation tests as concluding remarks.

  • PDF

Rank Tests for Multivariate Linear Models in the Presence of Missing Data

  • Lee, Jae-Won;David M. Reboussin
    • Journal of the Korean Statistical Society
    • /
    • 제26권3호
    • /
    • pp.319-332
    • /
    • 1997
  • The application of multivariate linear rank statistics to data with item nonresponse is considered. Only a modest extension of the complete data techniques is required when the missing data may be thought of as a random sample, and an appropriate modification of the covariances is derived. A proof of the asymptotic multivariate normality is given. A review of some related results in the literature is presented and applications including longitudinal and repeated measures designs are discussed.

  • PDF

A Measure of Agreement for Multivariate Interval Observations by Different Sets of Raters

  • Um, Yong-Hwan
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권4호
    • /
    • pp.957-963
    • /
    • 2004
  • A new agreement measure for multivariate interval data by different sets of raters is proposed. The proposed approach builds on Um's multivariate extension of Cohen's kappa. The proposed measure is compared with corresponding earlier measures based on Berry and Mielke's approach and Janson and Olsson approach, respectively. Application of the proposed measure is exemplified using hypothetical data set.

  • PDF

A Comparison Study of Multivariate Binary and Continuous Outcomes

  • Pak, Dae-Woo;Cho, Hyung-Jun
    • 응용통계연구
    • /
    • 제25권4호
    • /
    • pp.605-612
    • /
    • 2012
  • Multivariate data are often generated with multiple outcomes in various fields. Multiple outcomes could be mixed as continuous and discrete. Because of their complexity, the data are often dealt with by separately applying regression analysis to each outcome even though they are associated the each other. This univariate approach results in the low efficiency of estimates for parameters. We study the efficiency gains of the multivariate approaches relative to the univariate approach with the mixed data that include continuous and binary outcomes. All approaches yield consistent estimates for parameters with complete data. By jointly estimating parameters using multivariate methods, it is generally possible to obtain more accurate estimates for parameters than by a univariate approach. The association between continuous and binary outcomes creates a gap in efficiency between multivariate and univariate approaches. We provide a guidance to analyze the mixed data.

On The Generation of Multivariate Multinomial Random Numbers

  • Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • 제7권1호
    • /
    • pp.105-112
    • /
    • 1996
  • Softwares including random number generation are abundant in modern informative society. But it's hard to get directly multivariate multinomial random numbers from existing softwares. Multivariate multinomial random numbers are greatly used in social and medical sciences. In this paper, we show that desired multivariate multinomial random numbers can be easily generated by the aids of existing random number generating software. Some characteristics of multivariate multinomial distribution are surveyd. Measures of association for the generated random numbers were computed and compared with population ones via simulation study.

  • PDF

The Rao-Robson Chi-Squared Test for Multivariate Structure

  • Park, Cheol-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권4호
    • /
    • pp.1013-1021
    • /
    • 2003
  • Huffer and Park (2002) proposed a chi-squared test for multivariate structure. Their test detects the deviation of data from mutual independence or multivariate normality. We will compute the Rao-Robson chi-squared version of the test, which is easy to apply in practice since it has a limiting chi-squared distribution. We will provide a self-contained argument that it has a limiting chi-squared distribution. We study the accuracy in finite samples of the limiting distribution. We finally compare the power of our test with those of other popular normality tests in an application to a real data.

  • PDF

A New Agreement Measure for Interval Multivariate Observations

  • Um, Yong-Hwan
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권1호
    • /
    • pp.263-271
    • /
    • 2004
  • This article presents a new measure of chance-corrected interobserver agreement among multivariate ratings of many observers. Modifying an approach by Berry and Mielke, a new agreement measure is proposed. The important modificaton is to use the volume of simplex composed of data points as the disagreement masure. The proposed measure accounts agreement for multivariate interval observations among many observers. Hypothetical and real-life data sets are analyzed for illustrative purpose.

  • PDF

Multivariate CTE for copula distributions

  • Hong, Chong Sun;Kim, Jae Young
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권2호
    • /
    • pp.421-433
    • /
    • 2017
  • The CTE (conditional tail expectation) is a useful risk management measure for a diversified investment portfolio that can be generally estimated by using a transformed univariate distribution. Hong et al. (2016) proposed a multivariate CTE based on multivariate quantile vectors, and explored its characteristics for multivariate normal distributions. Since most real financial data is not distributed symmetrically, it is problematic to apply the CTE to normal distributions. In order to obtain a multivariate CTE for various kinds of joint distributions, distribution fitting methods using copula functions are proposed in this work. Among the many copula functions, the Clayton, Frank, and Gumbel functions are considered, and the multivariate CTEs are obtained by using their generator functions and parameters. These CTEs are compared with CTEs obtained using other distribution functions. The characteristics of the multivariate CTEs are discussed, as are the properties of the distribution functions and their corresponding accuracy. Finally, conclusions are derived and presented with illustrative examples.

상관된 시계열 자료 모니터링을 위한 다변량 누적합 관리도 (Multivariate CUSUM Chart to Monitor Correlated Multivariate Time-series Observations)

  • 이규영;이미림
    • 품질경영학회지
    • /
    • 제49권4호
    • /
    • pp.539-550
    • /
    • 2021
  • Purpose: The purpose of this study is to propose a multivariate CUSUM control chart that can detect the out-of-control state fast while monitoring the cross- and auto- correlated multivariate time series data. Methods: We first build models to estimate the observation data and calculate the corresponding residuals. After then, a multivariate CUSUM chart is applied to monitor the residuals instead of the original raw observation data. Vector Autoregression and Artificial Neural Net are selected for the modelling, and Separated-MCUSUM chart is selected for the monitoring. The suggested methods are tested under a number of experimental settings and the performances are compared with those of other existing methods. Results: We find that Artificial Neural Net is more appropriate than Vector Autoregression for the modelling and show the combination of Separated-MCUSUM with Artificial Neural Net outperforms the other alternatives considered in this paper. Conclusion: The suggested chart has many advantages. It can monitor the complicated multivariate data with cross- and auto- correlation, and detects the out-of-control state fast. Unlike other CUSUM charts finding their control limits by trial and error simulation, the suggested chart saves lots of time and effort by approximating its control limit mathematically. We expect that the suggested chart performs not only effectively but also efficiently for monitoring the process with complicated correlations and frequently-changed parameters.