• Title/Summary/Keyword: multistory building

Search Result 64, Processing Time 0.018 seconds

Damage detection of multistory shear buildings using partial modal data

  • Shah, Ankur;Vesmawala, Gaurang;Meruane, V.
    • Earthquakes and Structures
    • /
    • v.23 no.1
    • /
    • pp.1-11
    • /
    • 2022
  • This study implements a hybrid Genetic Algorithm to detect, locate, and quantify structural damage for multistory shear buildings using partial modal data. Measuring modal responses at multiple locations on a structure is both challenging and expensive in practice. The proposed method's objective function is based on the building's dynamic properties and can also be employed with partial modal information. This method includes initial residuals between the numerical and experimental model and a damage penalization term to avoid false damages. To test the proposed method, a numerical example of a ten-story shear building with noisy and partial modal information was explored. The obtained results were in agreement with the previously published research. The proposed method's performance was also verified using experimental modal data of an 8-DOF spring-mass system and a five-story shear building. The predicted results for numerical and experimental examples indicated that the proposed method is reliable in identifying the damage for multistory shear buildings.

Damage detection of mono-coupled multistory buildings: Numerical and experimental investigations

  • Xu, Y.L.;Zhu, Hongping;Chen, J.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.6
    • /
    • pp.709-729
    • /
    • 2004
  • This paper presents numerical and experimental investigations on damage detection of mono-coupled multistory buildings using natural frequency as only diagnostic parameter. Frequency equation of a mono-coupled multistory building is first derived using the transfer matrix method. Closed-form sensitivity equation is established to relate the relative change in the stiffness of each story to the relative changes in the natural frequencies of the building. Damage detection is then performed using the sensitivity equation with its special features and minimizing the norm of an objective function with an inequality constraint. Numerical and experimental investigations are finally conducted on a mono-coupled 3-story building model as an application of the proposed algorithm, in which the influence of modeling error on the degree of accuracy of damage detection is discussed. A mono-coupled 10-story building is further used to examine the capability of the proposed algorithm against measurement noise and incomplete measured natural frequencies. The results obtained demonstrate that changes in story stiffness can be satisfactorily detected, located, and quantified if all sensitive natural frequencies to damaged stories are available. The proposed damage detection algorithm is not sensitive to measurement noise and modeling error.

A Study on the Elevation and Facade Design Factors of European Multistory-Housing (유럽 집합주택의 입면 디자인 요소에 관한 연구 - 1980년대 이후 사례를 중심으로 -)

  • Kim, Jun-Lae;Jun, Nam-Il
    • Journal of the Korean housing association
    • /
    • v.21 no.5
    • /
    • pp.23-33
    • /
    • 2010
  • In the late twentieth century, the multistory housing has become the most preferred housing type. Moreover, in multistory housing design, not only interior design but also exterior design, uniqueness and characteristic have been added as significant factors in design to break simplicity and uniformity. The purpose of this study is to understand the tendency of the elevation design in Europe and to suggest the idea for elevation design for domestic. Also, each elements of elevation were analyzed through classification and schematization which categorized by its own characteristic. Design elements can be classified into three categories. They are corresponding with inner spaces, emphasizing visual expression of exterior material and texture, and presenting aesthetic factors of building shape. Those are named as the Spatial Externalization, the Visual Expression, and the Expression of Building Shape. In this frame nineteen elevations of sixteen different cases were analysed. As a result of case studies, it is clear that elevation designs were not standardized and each cases has its own characteristics. Also it showed how the each design elements can be coordinated as a total design and how they expressed identities of each housing. This study could contribute to motivate diversifying the design of multistory housing.

Experimental investigation on in-plane seismic behavior of multistory opening masonry walls with two different failure modes

  • Xin, Ren;Bi, Dengshan;Huang, Wei
    • Structural Engineering and Mechanics
    • /
    • v.84 no.4
    • /
    • pp.479-488
    • /
    • 2022
  • Aiming to examine different failure patterns in multistory URM walls, two 1/3 scaled three-story and three-bay URM models were designed for the quasi-static loading tests to contrastively investigate the failure processes and characteristics of the multistory URM walls. Two different failure responses were observed with special attention paid to the behavior of spandrel-failure mode. By evaluating the seismic performance and deformation behavior of two test walls, it is demonstrated that spandrels, that haven't been properly designed in some codes, are of great significance in the failure of entire URM walls. Additionally, compared with pier-failure mode, spandrel-failure for multistory URM building is more reasonable and advisable as its effectively participation in energy dissipation and its efficiently improvement on seismic capacity and deformation in the overall structure. Furthermore, the experimental results are beneficial to improve seismic design and optimize reinforcement method of URM buildings.

SEISMIC RESPONSE OF MULTISTORY BUILDING STRUCTURES WITH FLEXIBLE FLOOR DIAPHRNGMS

  • Lee, Dong-Guen;Moon, Sung-Kwon
    • Computational Structural Engineering
    • /
    • v.2 no.1
    • /
    • pp.47-53
    • /
    • 1989
  • An efficient model for three-dimensional analysis of multistory structures with flexible floor diaphrgms is proposed in this paper. Three-dimensional analysis of a building structure using a finite element model requires tedious input data preparation, longer computation time, and larger computer memory. The model proposed in this study is developed by assembling a series of two-dimensional resisting systems and is considered to overcome the shortcomings of a three-dimensional finite element model without deteriorating the accuracy of analysis results. Static and dynamic analysis results obtained using the proposed model are in excellent agreement with those obtained using three-dimensional finite element models in terms of displacement, periods, and mode shapes. Effects of floor diaphragm flexibility on seismic response of multistory building structures are investigated.

  • PDF

Implications of the effects of gravity load for earthquake resistant design of multistory building structurtes (고층건물의 내진설계에 미치는 중력하중의 영향)

  • 이동근;이석용
    • Computational Structural Engineering
    • /
    • v.6 no.3
    • /
    • pp.67-80
    • /
    • 1993
  • This paper presents the results of an analytical study to evaluate the inelastic seismic response characteristics of multistory building structures, the effects of gravity load on the seismic responses and its implications on the earthquake resistant design. Static analyses for incremental lateral force and nonlinear dynamic analyses for earthquake motions were performed to evaluate the seismic response of example multistory building structures. Most of considerations are placed on the distribution of inelastic responses over the height of the structure. When an earthquake occurs, bending moment demand is increased considerably from the top to the bottom of multistory structures, so that differences between bending moment demands and supplies are greater in lower floos of multistory structures. As a result, for building structures designed by the current earthquake resistant design procedure, inelastic deformations for earthquake ground motions do not distribute uniformly over the height of structures and those are induced mainly in bottom floors. In addition, gravity load considerded in design procedure tends to cause much larger damages in lower floors. From the point of view of seismic responses, gravity load affects the initial yield time of griders in earlier stage of strong earthquakes and results in different inelastic responses among the plastic hinges that form in the girders of a same floor. However, gravity load moments at beam ends are gradually reduced and finally fully relaxed after a structure experiences some inelastic excursions as a ground motion is getting stronger. Reduction of gravity load moment results in much increased structural damages in lower floors building structures. The implications of the effects of gravity load for seismic design of multistory building structures are to reduce the contributions of gravity load and to increased those of seismic load in determination of flexual strength for girders and columns.

  • PDF

A Study on the Improved Seismic Analysis of Multistory Shear Wall Buildings (전단벽식 고층건물의 내진해석에 관한 연구)

  • 이준교;이근홍;이수곤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.267-272
    • /
    • 1993
  • Currently about 60 contries in the world require earthquake resistant structural design in case of multistory building constructions. In these cases the equivalent lateral force procedure is commonly adopted because of its simplicity and convenience. This procedure, however, is developed based mainly on the first vibration mode response of building structure. The dynamic analysis of tall building shows that the effect of higher modes of vibration on the response of the building can not be neglected. In this paper, the effect of higher modes of vibration on seismic response is evaluated through modal analysis of tall building structures. On the basis of evaluation results, an improved procedure is to be proposed for the extended application of the equivalent lateral force procedure.

  • PDF

An Efficient Structural Analysis of Multistory Buildings (고층건물의 효율적인 구조해석)

  • Kim, Kyeong Ho;Lee, Dong Guen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.141-153
    • /
    • 1987
  • The prediction of the exact behavior of multistory building is one of the most complicated problem encountered in structural engineering practice. An efficient computer method for the three dimensional analysis of building structures is presented in this paper. A multistory building is idealized as an assemblage of a series of rectangular plane frames interconnected by rigid floor diaphragms. The matrix condensation technique is employed for the reduction of degrees of freedom, which results in a significant saving in computational efforts and the required memory size. Kinematical approach was used to assemble condensed stiffness matrices of plane frames into a three dimensional stick model stiffness matrix. The static analysis follows the modified tridiagonal approach. Since this procedure utilizes the condensed stiffness matrix of the structure, the dynamic equations of motion for the story displacement are developed by assigning proper mass for each story. Analysis results of several example structures are compared to those obtained by using the well-known SAP IV for verification of the accuracy and efficiency of the computer program PFS which was developed utilizing the method proposed in this study. The analysis method proposed in this study can be used as an efficient and economical means for the analysis of multistory buildings.

  • PDF

Responses of Equivalent SDOF System for System Ductility Demands Evaluation of Multistory Building Structures (건축구조물의 시스템 연성요구도 평가를 위한 대표응답의 활용)

  • 최원호;이동근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.446-453
    • /
    • 2001
  • System-level ductility is an essential parameter for seismic performance evaluation of multistory building structures. The ductility demands for single degree of freedom structures or individual structural members can be determined easily. However, there is no clearly established method to determine the ductility demands for structural systems. The system ductility demands are estimated in this study by the equivalent SDOF system methods and proposed method which used the representative responses obtained from the MDOF systems directly. And seismic performance of building structures is evaluated by the modified Capacity Spectrum Method using the representative responses, and the result was compared with those of the inelastic time history analysis.

  • PDF

Study on the Performance of Wireless Local Area Network in a Multistory Environment with 8-PSK TCM

  • Suwattana, Danai;Santiyanon, Jakkapol;Laopetcharat, Thawan;Charoenwattanaporn, Monton;Goenchanart, Ut;Malisuwan, Settapong
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.549-551
    • /
    • 2002
  • A Wireless Local Area Network (WLAN) is a flexible data communication system implemented as an extension to, or as an alternative for, a wired LAN with in a building or campus. However, communications in an indoor environment present problems not encountered in outdoor wireless communication systems. Since cellular type systems are interference limited, the indoor environment is more hostile than the outdoor environment due to the lower propagation constant. In this paper, the equation for the signal to interference ratio in a multistory building will be derived. Knowing the S/I ratio, the floor frequency reuse can be determined. Finally, the simulation in this research is designed to study the performance (BER) of WLAN system in the multistory environment by applying the 8-PSK Trellis Coded modulation technique. The procedure allows a quick evaluation of BER in Wireless LAN system due to the co-channel interference.

  • PDF