• Title/Summary/Keyword: multiscale problems

Search Result 49, Processing Time 0.024 seconds

A LOCAL CONSERVATIVE MULTISCALE METHOD FOR ELLIPTIC PROBLEMS WITH OSCILLATING COEFFICIENTS

  • JEON, YOUNGMOK;PARK, EUN-JAE
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.24 no.2
    • /
    • pp.215-227
    • /
    • 2020
  • A new multiscale finite element method for elliptic problems with highly oscillating coefficients are introduced. A hybridization yields a locally flux-conserving numerical scheme for multiscale problems. Our approach naturally induces a homogenized equation which facilitates error analysis. Complete convergence analysis is given and numerical examples are presented to validate our analysis.

Multiscale method and pseudospectral simulations for linear viscoelastic incompressible flows

  • Zhang, Ling;Ouyang, Jie
    • Interaction and multiscale mechanics
    • /
    • v.5 no.1
    • /
    • pp.27-40
    • /
    • 2012
  • The two-dimensional incompressible flow of a linear viscoelastic fluid we considered in this research has rapidly oscillating initial conditions which contain both the large scale and small scale information. In order to grasp this double-scale phenomenon of the complex flow, a multiscale analysis method is developed based on the mathematical homogenization theory. For the incompressible flow of a linear viscoelastic Maxwell fluid, a well-posed multiscale system, including averaged equations and cell problems, is derived by employing the appropriate multiple scale asymptotic expansions to approximate the velocity, pressure and stress fields. And then, this multiscale system is solved numerically using the pseudospectral algorithm based on a time-splitting semi-implicit influence matrix method. The comparisons between the multiscale solutions and the direct numerical simulations demonstrate that the multiscale model not only captures large scale features accurately, but also reflects kinetic interactions between the large and small scale of the incompressible flow of a linear viscoelastic fluid.

Development of three dimensional variable-node elements and their applications to multiscale problems (삼차원 다절점 유한요소의 개발과 멀티스케일 문제의 적용)

  • Lim, Jae-Hyuk;Sohn, Dong-Woo;Im, Se-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.172-176
    • /
    • 2008
  • In this paper, three dimensional linear conforming variable-finite elements are presented with the aid of a smoothed integration (a class of stabilized conforming nodal integration), for mnltiscale mechanics problems. These elements meet the desirable properties of an interpolation such as the Kronecker delta condition, the partition of unity condition and the positiveness of interpolation function. The necessary condition of linear exactness is fully relaxed by employing the smoothed integration, which renders us to meet the linear exactness in a straightforward manner. This novel element description extend the category of the conventional finite elements space to ration type function space and give the flexibility on the number of nodes of element which are fixed in the conventional finite elements. Several examples are provided to show the convergence and the accuracy of the proposed elements, and to demonstrate their potential with emphasis on the multiscale mechanics problems such as global/local analysis, nonmatching contact problems, and modeling of composite material with defects.

  • PDF

A Robust Crack Filter Based on Local Gray Level Variation and Multiscale Analysis for Automatic Crack Detection in X-ray Images

  • Peng, Shao-Hu;Nam, Hyun-Do
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.1035-1041
    • /
    • 2016
  • Internal cracks in products are invisible and can lead to fatal crashes or damage. Since X-rays can penetrate materials and be attenuated according to the material’s thickness and density, they have rapidly become the accepted technology for non-destructive inspection of internal cracks. This paper presents a robust crack filter based on local gray level variation and multiscale analysis for automatic detection of cracks in X-ray images. The proposed filter takes advantage of the image gray level and its local variations to detect cracks in the X-ray image. To overcome the problems of image noise and the non-uniform intensity of the X-ray image, a new method of estimating the local gray level variation is proposed in this paper. In order to detect various sizes of crack, this paper proposes using different neighboring distances to construct an image pyramid for multiscale analysis. By use of local gray level variation and multiscale analysis, the proposed crack filter is able to detect cracks of various sizes in X-ray images while contending with the problems of noise and non-uniform intensity. Experimental results show that the proposed crack filter outperforms the Gaussian model based crack filter and the LBP model based method in terms of detection accuracy, false detection ratio and processing speed.

The construction of second generation wavelet-based multivariable finite elements for multiscale analysis of beam problems

  • Wang, Youming;Wu, Qing;Wang, Wenqing
    • Structural Engineering and Mechanics
    • /
    • v.50 no.5
    • /
    • pp.679-695
    • /
    • 2014
  • A design method of second generation wavelet (SGW)-based multivariable finite elements is proposed for static and vibration beam analysis. An important property of SGWs is that they can be custom designed by selecting appropriate lifting coefficients depending on the application. The SGW-based multivariable finite element equations of static and vibration analysis of beam problems with two and three kinds of variables are derived based on the generalized variational principles. Compared to classical finite element method (FEM), the second generation wavelet-based multivariable finite element method (SGW-MFEM) combines the advantages of high approximation performance of the SGW method and independent solution of field functions of the MFEM. A multiscale algorithm for SGW-MFEM is presented to solve structural engineering problems. Numerical examples demonstrate the proposed method is a flexible and accurate method in static and vibration beam analysis.

Eigenvalue Analysis of a Membrane Using the Multiscale Adaptive Wavelet-Galerkin Method (멀티스케일 적응 웨이블렛-갤러킨 기법을 이용한 박막 고유치 문제 해석)

  • Yi, Yong-Sub;Kim, Yoon-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.251-258
    • /
    • 2004
  • Since the multiscale wavelet-based numerical methods allow effective adaptive analysis, they have become new analysis tools. However, the main applications of these methods have been mainly on elliptic problems, they are rarely used for eigenvalue analysis. The objective of this paper is to develop a new multiscale wavelet-based adaptive Galerkin method for eigenvalue analysis. To this end, we employ the hat interpolation wavelets as the basis functions of the finite-dimensional trial function space and formulate a multiresolution analysis approach using the multiscale wavelet-Galerkin method. It is then shown that this multiresolution formulation makes iterative eigensolvers very efficient. The intrinsic difference-checking nature of wavelets is shown to play a critical role in the adaptive analysis. The effectiveness of the present approach will be examined in terms of the total numbers of required nodes and CPU times.

Implementation Strategy for the Numerical Efficiency Improvement of the Multiscale Interpolation Wavelet-Galerkin Method

  • Seo Jeong Hun;Earmme Taemin;Jang Gang-Won;Kim Yoon Young
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.110-124
    • /
    • 2006
  • The multi scale wavelet-Galerkin method implemented in an adaptive manner has an advantage of obtaining accurate solutions with a substantially reduced number of interpolation points. The method is becoming popular, but its numerical efficiency still needs improvement. The objectives of this investigation are to present a new numerical scheme to improve the performance of the multi scale adaptive wavelet-Galerkin method and to give detailed implementation procedure. Specifically, the subdomain technique suitable for multiscale methods is developed and implemented. When the standard wavelet-Galerkin method is implemented without domain subdivision, the interaction between very long scale wavelets and very short scale wavelets leads to a poorly-sparse system matrix, which considerably worsens numerical efficiency for large-sized problems. The performance of the developed strategy is checked in terms of numerical costs such as the CPU time and memory size. Since the detailed implementation procedure including preprocessing and stiffness matrix construction is given, researchers having experiences in standard finite element implementation may be able to extend the multi scale method further or utilize some features of the multiscale method in their own applications.

A Data-driven Multiscale Analysis for Hyperelastic Composite Materials Based on the Mean-field Homogenization Method (초탄성 복합재의 평균장 균질화 데이터 기반 멀티스케일 해석)

  • Suhan Kim;Wonjoo Lee;Hyunseong Shin
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.329-334
    • /
    • 2023
  • The classical multiscale finite element (FE2 ) method involves iterative calculations of micro-boundary value problems for representative volume elements at every integration point in macro scale, making it a computationally time and data storage space. To overcome this, we developed the data-driven multiscale analysis method based on the mean-field homogenization (MFH). Data-driven computational mechanics (DDCM) analysis is a model-free approach that directly utilizes strain-stress datasets. For performing multiscale analysis, we efficiently construct a strain-stress database for the microstructure of composite materials using mean-field homogenization and conduct data-driven computational mechanics simulations based on this database. In this paper, we apply the developed multiscale analysis framework to an example, confirming the results of data-driven computational mechanics simulations considering the microstructure of a hyperelastic composite material. Therefore, the application of data-driven computational mechanics approach in multiscale analysis can be applied to various materials and structures, opening up new possibilities for multiscale analysis research and applications.

A MULTISCALE MORTAR MIXED FINITE ELEMENT METHOD FOR SLIGHTLY COMPRESSIBLE FLOWS IN POROUS MEDIA

  • Kim, Mi-Young;Park, Eun-Jae;Thomas, Sunil G.;Wheeler, Mary F.
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.5
    • /
    • pp.1103-1119
    • /
    • 2007
  • We consider multiscale mortar mixed finite element discretizations for slightly compressible Darcy flows in porous media. This paper is an extension of the formulation introduced by Arbogast et al. for the incompressible problem [2]. In this method, flux continuity is imposed via a mortar finite element space on a coarse grid scale, while the equations in the coarse elements (or subdomains) are discretized on a fine grid scale. Optimal fine scale convergence is obtained by an appropriate choice of mortar grid and polynomial degree of approximation. Parallel numerical simulations on some multiscale benchmark problems are given to show the efficiency and effectiveness of the method.

SOME RECENT TOPICS IN COMPUTATIONAL MATHEMATICS - FINITE ELEMENT METHODS

  • Park, Eun-Jae
    • Korean Journal of Mathematics
    • /
    • v.13 no.2
    • /
    • pp.127-137
    • /
    • 2005
  • The objective of numerical analysis is to devise and analyze efficient algorithms or numerical methods for equations arising in mathematical modeling for science and engineering. In this article, we present some recent topics in computational mathematics, specially in the finite element method and overview the development of the mixed finite element method in the context of second order elliptic and parabolic problems. Multiscale methods such as MsFEM, HMM, and VMsM are included.

  • PDF