• Title/Summary/Keyword: multiplicative reconstruction technique

Search Result 13, Processing Time 0.023 seconds

Analysis of Unsteady and Asymmetric Flows Using Digital Speckle Tomography with Developed Integration Method (개발된 적분법을 포함하는 디지털 스펙클 토모그래피 기법을 이용한 비정상 비대칭 유동 분석)

  • Baek, Seung-Hwan;Kim, Yong-Jae;Ko, Han-Seo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.517-518
    • /
    • 2006
  • Transient and asymmetric density distributions have been investigated by three-dimensional digital speckle tomography with a novel integration method. Multiple CCD images captured movements of speckles in three angles of view simultaneously because the flows were asymmetric and unsteady. The speckle movements which have been formed by a ground glass between no flow and downward butane flow from a circular half opening have been calculated by a cross-correlation tracking method so that those distances can be transferred to deflection angles of laser rays for density gradients. A novel integration method has been developed to obtain projection data from the deflection angles for the speckle tomography.'The three-dimensional density fields have been reconstructed from the accurate projection values by a real-time multiplicative algebraic reconstruction technique (MART) with the developed integration method.

  • PDF

Analysis of Density Distribution for Butane Using Three-dimentional and Real-time Digital Speckle Tomography (3차원 실시간 디지털 스페클 토모그래피를 이용한 부탄 밀도 분포 분석)

  • Go, Han-Seo;Park, Gwang-Hui;Kim, Yong-Jae
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1789-1794
    • /
    • 2003
  • Transient and asymmetric density distributions have been investigated by digital speckle tomography. Multiple CCD images captured movements of speckles in three angles of view simultaneously because the flows were asymmetric and transient. The speckle movements between no flow and downward butane flow from a circular half opening have been calculated by a cross-correlation tracking method so that those distances can be tranferred to deflection angles of laser rays for density gradients. The three-dimensional density fields have been reconstructed from the fringe shift by a real-time multiplicative algebraic reconstruction technique (MART).

  • PDF

Development Of Four-Dimensional Digital Speckle Tomography For Experimental Analysis Of High-Speed Helium Jet Flow (고속 헬륨 제트 유동의 실험적 분석을 위한 4차원 디지털 스펙클 토모그래피 기법 개발)

  • Ko, Han-Seo;Kim, Yong-Jae
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.2
    • /
    • pp.193-203
    • /
    • 2006
  • A high-speed and initial helium jet flow has been analyzed by a developed four-dimensional digital speckle tomography. Multiple high-speed cameras have been used to capture movements of speckles in multiple angles of view simultaneously because a shape of a nozzle for the jet flow is asymmetric and the initial jet flow is fast and unsteady. The speckle movements between no flow and helium jet flow from the asymmetric nozzle controlled by a solenoid valve have been obtained by a cross-correlation tracking method so that those distances can be transferred to deflection angles of laser rays for density gradients. The four-dimensional density fields for the high-speed helium jet flow have been reconstructed from the deflection angles by a developed real-time tomography method.