• Title/Summary/Keyword: multiplicative ARIMA

Search Result 26, Processing Time 0.026 seconds

Stochastic Forecasting of Monthly River Flwos by Multiplicative ARIMA Model (Multiplicative ARIMA 모형에 의한 월유량의 추계학적 모의 예측)

  • 박무종;윤용남
    • Water for future
    • /
    • v.22 no.3
    • /
    • pp.331-339
    • /
    • 1989
  • The monthly flows with periodicity and trend were forecasted by multiplicative ARIMA model and then the applicability of the model was tested based on 23 years of the historical monthly flow data at Jindong river stage gauging station in the Nakdong River Basin. The parameter estimation was made with 21 years of data and the remaining two years of monthly data were used to compare the forecasted flows by ARIMA (2,0,0)$\times$$(0,1,1)_{12}$ with the observed. The results of forecast showed a good agreement with the observed, implying the applicability of multiplicative ARIMA model for forecasting monthly river flows at the Jindong site.

  • PDF

Forecasting the Container Throughput of the Busan Port using a Seasonal Multiplicative ARIMA Model (승법계절 ARIMA 모형에 의한 부산항 컨테이너 물동량 추정과 예측)

  • Yi, Ghae-Deug
    • Journal of Korea Port Economic Association
    • /
    • v.29 no.3
    • /
    • pp.1-23
    • /
    • 2013
  • This paper estimates and forecasts the container throughput of Busan port using the monthly data for years 1992-2011. To do this, this paper uses the several seasonal multiplicative ARIMA models. Among several ARIMA models, the seasonal multiplicative ARIMA model $(1,0,1){\times}(1,0,1)_{12}$ is selected as the best model by AIC, SC and Hannan-Quin information criteria. According to the forecasting values of the selected seasonal multiplicative ARIMA model $(1,0,1){\times}(1,0,1)_{12}$, the container throughput of Busan port for 2013-2020 will increase steadily annually, but there will be some volatile variations monthly due to the seasonality and other factors. Thus, to forecast the future container throughput of Busan port and to develop the Busan port efficiently, we need to use and analyze the seasonal multiplicative ARIMA model $(1,0,1){\times}(1,0,1)_{12}$.

Stochastic Characteristics of Water Quality Variation of the Chungju Lake (충주호 수질변동의 추계학적 특성)

  • 정효준;황대호;백도현;이홍근
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.3
    • /
    • pp.35-42
    • /
    • 2001
  • The characteristics of water quality variation were predicted by stochastic model in Chungju dam, north Chungcheong province of south Korea, Monthly time series data of water quality from 1989 to 2001;temperature, BOD, COD and SS, were obtained from environmental yearbook and internet homepage of ministry of environment. Development of model was carried out with Box-Jenkins method, which includes model identification, estimation and diagnostic checking. ACF and PACF were used to model identification. AIC and BIC were used to model estimation. Seosonal multiplicative ARIMA(1, 0, 1)(1, 1, 0)$_{12}$ model was appropriate to explain stochastic characteristics of temperature. BOD model was ARMa(2, 2, 1), COD was seasonal multiplicative ARIMA(2. 0. 1)(1. 0, 1)$_{12}$, and SS was ARIMA(1, 0, 2) respectively. The simulated water quality data showed a good fitness to the observed data, as a result of model verification.ion.

  • PDF

Forecasting the Trading Volumes of Marine Transport and Ports Logistics Policy -Using Multiplicative Seasonal ARIMA Model- (해상운송의 물동량 예측과 항만물류정책 -승법 계절 ARIMA 모형을 이용하여-)

  • Kim, Chang-Beom
    • Journal of Korea Port Economic Association
    • /
    • v.23 no.1
    • /
    • pp.149-162
    • /
    • 2007
  • The purpose of this study is to forecast the marine trading volumes using multiplicative seasonal Autoregressive Integrated Moving Average(ARIMA) model. The paper proceeds by comparing the forecasting performances of the unload volumes with those of the load volumes with Box-Jenkins ARIMA model. Also, I present the predicted values based on the ARIMA model. The result shows that the trading volumes increase very slowly.

  • PDF

ARIMA 모형에 의한 하천수질 예측

  • 류병로;한양수
    • Journal of Environmental Science International
    • /
    • v.7 no.4
    • /
    • pp.433-440
    • /
    • 1998
  • This study was carried out to develop the stream water quality model for the intaking station of Kongju waterworks in the Keum River system. The monthly water quality(total nitrogen and total phosphorus) with periodicity and trend were forecasted by multiplicative ARIU models and then the applicability of the models was tested based on 7 years of the historical monthly water quality data at Kongju intaking strate. The parameter estimation was made with the monthly observed data. The last one year data was used to compare the forecasted water Quality by ARU model with the observed one. The models are ARIMA(2,0,0)$\times$(0,1,1)l2 for total nitrogen, ARIMA(0,1,1)x(0,1,1)l2 for total phosphorus. The forecasting results showed a good agreement with the observed data. It is implying the applicability of multiplicative ARIMA model for forecasting monthly water quality at the Kongju site.

  • PDF

Forecasting the Seaborne Trade Volume using Intervention Multiplicative Seasonal ARIMA and Artificial Neural Network Model (개입 승법계절 ARIMA와 인공신경망모형을 이용한 해상운송 물동량의 예측)

  • Kim, Chang-Beom
    • Journal of Korea Port Economic Association
    • /
    • v.31 no.1
    • /
    • pp.69-84
    • /
    • 2015
  • The purpose of this study is to forecast the seaborne trade volume during January 1994 to December 2014 using the multiplicative seasonal autoregressive integrated moving average (ARIMA) along with intervention factors and an artificial neural network (ANN) model. Diagnostic checks of the ARIMA model were conducted using the Ljung-Box Q and Jarque-Bera statistics. All types of ARIMA process satisfied the basic assumption of residuals. The ARIMA(2,1,0) $(1,0,1)_{12}$ model showed the lowest forecast error. In addition, the prediction error of the artificial neural network indicated a level of 5.9% on hidden layer 5, which suggests a relatively accurate forecasts. Furthermore, the ex-ante predicted values based on the ARIMA model and ANN model are presented. The result shows that the seaborne trade volume increases very slowly.

ARIMA Modeling for Monthly Oxygen Demand Data (수질 자료에 대한 ARIMA 모형 적용(지역환경 \circled2))

  • 허용구;박승우
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.590-598
    • /
    • 2000
  • A multiplicative ARIMA model was tested and applied to analyze the periodicity and trends of 168 monthly oxygen demand data from the Noryanggin water quality gauging station in the downstream Han River. ARIMA model was identified to fit to the data using ACF and PACF tests, and the parameters estimated using an unconditional least square method. The residuals between the observed and forecasted data were acceptable with the Porte-Manteau test. A forecast of DO changes was made for its applications.

  • PDF

Comparison of the BOD Forecasting Ability of the ARIMA model and the Artificial Neural Network Model (ARIMA 모형과 인공신경망모형의 BOD예측력 비교)

  • 정효준;이홍근
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.3
    • /
    • pp.19-25
    • /
    • 2002
  • In this paper, the water quality forecast was performed on the BOD of the Chungju Dam using the ARIMA model, which is a nonlinear statistics model, and the artificial neural network model. The monthly data of water quality were collected from 1991 to 2000. The most appropriate ARIMA model for Chungju dam was found to be the multiplicative seasonal ARIMA(1,0,1)(1,0,1)$_{12}$, model. While the artificial neural network model, which is used relatively often in recent days, forecasts new data by the strength of a learned matrix like human neurons. The BOD values were forecasted using the back-propagation algorithm of multi-layer perceptrons in this paper. Artificial neural network model was com- posed of two hidden layers and the node number of each hidden layer was designed fifteen. It was demonstrated that the ARIMA model was more appropriate in terms of changes around the overall average, but the artificial neural net-work model was more appropriate in terms of reflecting the minimum and the maximum values.s.

The Forecasting of Monthly Runoff using Stocastic Simulation Technique (추계학적 모의발생기법을 이용한 월 유출 예측)

  • An, Sang-Jin;Lee, Jae-Gyeong
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.2
    • /
    • pp.159-167
    • /
    • 2000
  • The purpose of this study is to estimate the stochastic monthly runoff model for the Kunwi south station of Wi-stream basin in Nakdong river system. This model was based on the theory of Box-Jenkins multiplicative ARlMA and the state-space model to simulate changes of monthly runoff. The forecasting monthly runoff from the pair of estimated effective rainfall and observed value of runoff in the uniform interval was given less standard error then the analysis only by runoff, so this study was more rational forecasting by the use of effective rainfall and runoff. This paper analyzed the records of monthly runoff and effective rainfall, and applied the multiplicative ARlMA model and state-space model. For the P value of V AR(P) model to establish state-space theory, it used Ale value by lag time and VARMA model were established that it was findings to the constituent unit of state-space model using canonical correction coefficients. Therefore this paper confirms that state space model is very significant related with optimization factors of VARMA model.

  • PDF