• 제목/요약/키워드: multiplex-PCR

검색결과 490건 처리시간 0.019초

Multiplex Polymerase Chain Reaction Assay for Simultaneous Detection of Candida albicans and Candida dublinensis

  • Lim, Young-Hee;Lee, Do-Hyun
    • Journal of Microbiology
    • /
    • 제40권2호
    • /
    • pp.146-150
    • /
    • 2002
  • A multiplex polymerase chain reaction (PCR) assay was developed for the identification of two Candida species-albicans and dubliniensis. Three sets of primers were selected from different genomic sequences to specifically amplify a 516 bp fragment within the tops gene, specific for several species of the genus Candida (CCL primers); a 239 bp fragment within the $\alpha$INT1 gene, specific for Candida albicans (CAL primers); and a 175 bp fragment within the ALSD1 gene, specific for Candida dubliniensis (CDL primers). Using the primers in conjunction (multiplex PCR), we were able to detect both C. albicans and C. dubliniensis and to differentiate between them. The detection limit of the PCR assay was approximately 10 cells per milliliter of saline. Thus, this multiplex PCR assay can be applied for differentiation of C. albicans and C. dubliniensis from clinical specimens.

Development of a multiplex PCR method for identification of four genetically modified maize lines and its application in living modified organism identification

  • Park, Jin Ho;Seol, Min-A;Eum, Soon-Jae;Kim, Il Ryong;Lim, Hye Song;Lee, Jung Ro;Choi, Wonkyun
    • Journal of Plant Biotechnology
    • /
    • 제47권4호
    • /
    • pp.309-315
    • /
    • 2020
  • Advances in biotechnology have led to progress in crop genetic engineering to improve agricultural productivity. The use of genetically modified (GM) crops has increased, as have consumers' and regulators' concerns about the safety of GM crops to human health, and ecological biodiversity. As such, the identification of GM crops is a critical issue for developers and distributors, and their labeling is mandatory. Multiplex polymerase chain reaction (PCR) has been developed and its use validated for the detection and identification of GM crops in quarantine. Herein, we established a simultaneous detection method to identify four GM maize events. Event-specific primers were designed between the junction region of transgene and genome of four GM maize lines, namely 5307, DAS-40278-9, MON87460, and MON87427. To verify the efficiency and accuracy of the multiplex PCR we used specificity analysis, limit of detection evaluation, and mixed certified reference materials identification. The multiplex PCR method was applied to analyze 29 living, modified maize volunteers collected in South Korea in 2018 and 2019. We performed multiplex PCR analysis to identify events and confirmed the result by simplex PCR using each event-specific primer. As a result, rather than detecting each event individually, the simultaneous detection PCR method enabled the rapid analysis of 29 GM maize volunteers. Thus, the novel multiplex PCR method is applicable for living modified organism volunteer identification.

Multiplex PCR Detection for 3 Events of Genetically Modified Maize, DAS-59122-7, TC6275, and MIR604

  • Ahn, Ji-Hye;Kim, Jae-Hwan;Kim, Su-Youn;Lee, Woo-Young;Park, Sun-Hee;Kim, Hae-Yeong
    • Food Science and Biotechnology
    • /
    • 제17권3호
    • /
    • pp.569-572
    • /
    • 2008
  • A multiplex polymerase chain reaction (PCR) method was developed to simultaneously detect 3 events of genetically modified (GM) maize. The event-specific primers were used to discriminate the following 3 events of GM maize (DAS-59122-7, TC6275, and MIR604) using multiplex PCR method. The zein gene was used as an endogenous maize reference gene in the multiplex PCR detection. The primer pair Zein-FIR producing a 99 bp amplicon was used to amplify the zein gene. The primer JI-Das-F1/R1 for DAS-59122-7, JI-TC6275-F3/R3 for TC6275, and JI-MIR F1/R1 for MIR604 yielded an amplicon of 130, 162, and 197 bp, respectively. The detection limit of multiplex PCR was 1% for DAS-59122-7, TC6275, and MIR604 for one reaction.

Multiplex PCR Assay for Simultaneous Detection of Korean Quarantine Phytoplasmas

  • Kim, Young-Hwan;Win, Nang Kyu;Back, Chang-Gi;Yea, Mi-Chi;Yim, Kyu-Ock;Jung, Hee-Young
    • The Plant Pathology Journal
    • /
    • 제27권4호
    • /
    • pp.367-371
    • /
    • 2011
  • Multiplex PCR assays were developed for the simultaneous detection of ten important Korean quarantine phytoplasmas. The species-specific primers were designed based on ribosomal protein, putative preprotein translocase Y, immunodominant protein, elongation factor TU, chaperonin protein and the 16S rRNA genes of 'Candidatus (Ca.) Phytoplasma' species. Three main primer sets were prepared from ten designed primer pairs to limit nonspecific amplification as much as possible. The multiplex PCR assay using the three primer sets successfully amplified the correct conserved genes for each 'Ca. Phytoplasma' species. In addition, ten important 'Ca. Phytoplasma' species could be easily determined by recognizing band patterns specific for each phytoplasma species from three primer sets. Moreover, a high sensitivity of multiplex PCR for each primer set was observed for samples containing a low DNA concentration (10 ng/${\mu}l$). This study provides the useful multiplex PCR assay as a convenient method to detect the presence of ten important quarantine phytoplasmas in Korea.

A Multiplex PCR Method for the Detection of Genetically Modified Alfalfa (Medicago sativa L.) and Analysis of Feral Alfalfa in South Korea

  • Choi, Wonkyun;Kim, Il Ryong;Lim, Hye Song;Lee, Jung Ro
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • 제1권1호
    • /
    • pp.83-89
    • /
    • 2020
  • Methods for detecting the presence of genetically modified (GM) crops are evolving to comply with legislation and to enhance monitoring by biotechnology companies and regulators. In order to cover a broad range of detection methods for a new GM crop, conventional multiplex PCR methods are required. Based on the genetic information on three GM alfalfa varieties (J101, J163, and KK179), which were recently approved in South Korea, we developed a fast, reliable, and highly specific multiplex polymerase chain reaction (PCR) method with basic PCR equipment and inexpensive reagents. To validate and verify the newly developed multiplex PCR method, we applied a limit of detection assay and random reference material analysis. We also monitored the unintentional environmental release of GM alfalfa in South Korea by performing the multiplex PCR analysis with 91 feral alfalfa specimens collected from 2000 to 2018. Our methodology is a sensitive, simple, quick, and inexpensive tool for detecting and identifying three GM alfalfa varieties.

Multiplex PCR Detection of 4 Events of Genetically Modified Soybeans (RRS, A2704-12, DP356043-5, and MON89788)

  • Kim, Jae-Hwan;Seo, Young-Ju;Sun, Seol-Hee;Kim, Hae-Yeong
    • Food Science and Biotechnology
    • /
    • 제18권3호
    • /
    • pp.694-699
    • /
    • 2009
  • A multiplex polymerase chain reaction (PCR) method was developed for the detection of 4 events of genetically modified (GM) soybean. The event-specific primers were designed from 4 events of GM soybean (RRS, A2704-12, DP356043-5, and MON89788). The lectin was used as an endogenous reference gene of soybean in the PCR detection. The primer pair YjLec-4-F/R producing 100 bp amplicon was used to amplify the lectin gene and no amplified product was observed in any of the 9 different plants used as templates. This multiplex PCR method allowed for the detection of event-specific targets in a genomic DNA mixture of up to 1% GM soybean mixture containing RRS, A2704-12, DP356043-5, and MON89788. In this study, 20 soybean products obtained from commercial food markets were analyzed by the multiplex PCR. As a result, 6 samples contained RRS. These results indicate that this multiplex PCR method could be a useful tool for monitoring GM soybean.

Comparative Assessment of Diagnostic Performance of Cytochrome Oxidase Multiplex PCR and 18S rRNA Nested PCR

  • Kumari, Preeti;Sinha, Swati;Gahtori, Renuka;Quadiri, Afshana;Mahale, Paras;Savargaonkar, Deepali;Pande, Veena;Srivastava, Bina;Singh, Himmat;Anvikar, Anupkumar R
    • Parasites, Hosts and Diseases
    • /
    • 제60권4호
    • /
    • pp.295-299
    • /
    • 2022
  • Malaria elimination and control require prompt and accurate diagnosis for treatment plan. Since microscopy and rapid diagnostic test (RDT) are not sensitive particularly for diagnosing low parasitemia, highly sensitive diagnostic tools are required for accurate treatment. Molecular diagnosis of malaria is commonly carried out by nested polymerase chain reaction (PCR) targeting 18S rRNA gene, while this technique involves long turnaround time and multiple steps leading to false positive results. To overcome these drawbacks, we compared highly sensitive cytochrome oxidase gene-based single-step multiplex reaction with 18S rRNA nested PCR. Cytochrome oxidase (cox) genes of P. falciparum (cox-III) and P. vivax (cox-I) were compared with 18S rRNA gene nested PCR and microscopy. Cox gene multiplex PCR was found to be highly specific and sensitive, enhancing the detection limit of mixed infections. Cox gene multiplex PCR showed a sensitivity of 100% and a specificity of 97%. This approach can be used as an alternative diagnostic method as it offers higher diagnostic performance and is amenable to high throughput scaling up for a larger sample size at low cost.

Comparison of Molecular Assays for the Rapid Detection and Simultaneous Subtype Differentiation of the Pandemic Influenza A (H1N1) 2009 Virus

  • Lee, Mi Kyung;Kim, Hye Ryoun
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권8호
    • /
    • pp.1165-1169
    • /
    • 2012
  • In April 2009, the H1N1 pandemic influenza virus emerged as a novel influenza virus. The aim of this study was to compare the performances of several molecular assays, including conventional reverse transcription polymerase chain reaction (RT-PCR), two real-time reverse transcription (rRT)-PCRs, and two multiplex RTPCRs. A total of 381 clinical specimens were collected from patients (223 men and 158 women), and both the Seeplex RV7 assay and rRT-PCR were ordered on different specimens within one week after collection. The concordance rate for the two methods was 87% (332/381), and the discrepancy rate was 13% (49/381). The positive rates for the molecular assays studied included 93.1% for the multiplex Seeplex RV7 assay, 93.1% for conventional reverse transcription (cRT)-PCR, 89.7% for the multiplex Seeplex Flu ACE Subtyping assay, 82.8% for protocol B rRT-PCR, and 58.6% for protocol A rRT-PCR. Our results showed that the multiplex Seeplex assays and the cRT-PCR yielded higher detection rates than rRT-PCRs for detecting the influenza A (H1N1) virus. Although the multiplex Seeplex assays had the advantage of simultaneous detection of several viruses, they were time-consuming and troublesome. Our results show that, although rRT-PCR had the advantage, the detection rates of the molecular assays varied depending upon the source of the influenza A (H1N1)v virus. Our findings also suggest that rRT-PCR sometimes detected virus in extremely low abundance and thus required validation of analytical performance and clinical correlation.

북방전복 (Haliotis discus hannai)의 선발육종 연구를 위한 microsatellite multiplex PCR법 개발 (Microsatellite multiplex PCR method for selective breeding studies in Pacific abalone (Haliotis discus hannai))

  • 박철지;남원식;이명석;강지윤;김경길
    • 한국패류학회지
    • /
    • 제30권4호
    • /
    • pp.383-390
    • /
    • 2014
  • 북방전복 선발육종에 필요한 친자확인 및 가계분석을 효율적으로 실험하기 위하여 microsatellite multiplex PCR 기술을 개발하였다. 개발한 mutiplex PCR 기술은 6개 microsatellite locus Hdh145, Hdh512, Hdh1321, Awb017, Awb083 및 Awb098을 한번의 PCR 증폭으로 다중분석이 가능하다. 이 기술은 높은 친자확인 성공률과 가계분석에 있어서도 모두 멘델의 분리법칙을 따르고 있다. 더욱이 대량의 시료처리를 필요로 하는 경우에 있어서도 시간절약 및 비용 절감뿐만 아니라 샘플 처리과정의 간소화가 가능하여 handling errors를 줄일 수 있다. 따라서 본 연구에서 개발된 multiplex PCR은 친자확인, 가계분석, 집단유전학 및 계통분류학 분석에 유용하게 사용할 수 있을 것이라 생각된다.

Application of Multiplex Nested Methylated Specific PCR in Early Diagnosis of Epithelial Ovarian Cancer

  • Wang, Bi;Yu, Lei;Yang, Guo-Zhen;Luo, Xin;Huang, Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권7호
    • /
    • pp.3003-3007
    • /
    • 2015
  • Objective: To explore the application of multiplex nested methylated specific polymerase chain reaction (PCR) in the early diagnosis of epithelial ovarian carcinoma (EOC). Materials and Methods: Serum and fresh tissue samples were collected from 114 EOC patients. RUNX3, TFPI2 and OPCML served as target genes. Methylation levels of tissues were assessed by multiplex nested methylated specific PCR, the results being compared with those for carcinoma antigen 125 (CA125). Results: The serum free deoxyribose nucleic acid (DNA) methylation spectrum of EOC patients was completely contained in the DNA spectrum of cancer tissues, providing an accurate reflection of tumor DNA methylation conditions. Serum levels of CA125 and free DNA methylation in the EOC group were evidently higher than those in benign lesion and control groups (p<0.05). Patients with early EOC had markedly lower serum CA125 than those with advanced EOC (p<0.05), but there was no significant difference in free DNA methylation (p>0.05). The sensitivity, specificity and positive predicative value (PPV) of multiplex nested methylated specific PCR were significantly higher for detection of all patients and those with early EOC than those for CA125 (p<0.05). In the detection of patients with advanced EOC, the PPV of CA125 detection was obviously lower than that of multiplex nested methylated specific PCR (p>0.05), but there was no significant difference in sensitivity (p>0.05). Conclusions: Serum free DNA methylation can be used as a biological marker for EOC and multiplex nested methylated specific PCR should be considered for early diagnosis since it can accurately determine tumor methylation conditions.