• Title/Summary/Keyword: multiple-input single-output orthogonal frequency division multiplexing (MISO-OFDM)

Search Result 3, Processing Time 0.016 seconds

Margin Adaptive Optimization in Multi-User MISO-OFDM Systems under Rate Constraint

  • Wei, Chuanming;Qiu, Ling;Zhu, Jinkang
    • Journal of Communications and Networks
    • /
    • v.9 no.2
    • /
    • pp.112-117
    • /
    • 2007
  • In this paper, we focus on the total transmission power minimization problem for downlink beamforming multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems while ensuring each user's QoS requirement. Although the linear integer programming (LIP) solution we formulate provides the performance upper bound of the margin adaptive (MA) optimization problem, it is hard to be implemented in practice due to its high computational complexity. By regarding each user's equivalent channel gain as approximate independent values and using iterative descent method, we present a heuristic MA resource allocation algorithm. Simulation results show that the proposed algorithm efficiently converges to the local optimum, which is very close to the performance of the optimal LIP solution. Compared with existing space division multiple access (SDMA) OFDM systems with or without adaptive resource allocation, the proposed algorithm achieves significant performance improvement by exploiting the frequency diversity and multi-user diversity in downlink multiple-input single-output (MISO) OFDM systems.

PAPR Reduction in Limited Feedback MIMO Beeamforming OFDM Systems (제한된 되먹임의 송신 빔성형 MIMO OFDM 시스템에서 PAPR 감소 기법)

  • Shin, Joon-Woo;Jeong, Eui-Rim;Lee, Yong-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8C
    • /
    • pp.758-766
    • /
    • 2007
  • High peak-to-average power ratio(PAPR) is one of serious problems in the orthogonal frequency division multiplexing(OFDM) systems. This paper proposes a PAPR reduction technique for limited feedback multiple input multiple output(MIMO) OFDM systems. The proposed method is based on the null space of the MIMO channel where a dummy signal is made in the channel's null space and then, subtracted from the original signal to reduce the PAPR. First, we show that a problem occurs when the existing method is directly applied to limited feedback MIMO case. Then, a weight function for the dummy signal is proposed to mitigate the degradation of the receiver performance while still reducing PAPR significantly. The weight function is derived from a constrained nonlinear optimization problem to minimize the mean square error between the received signal and its ideal signal. Simulation results shows that the proposed technique provides about 2.5dB PAPR reduction with 0.2dB bit-error probability loss.

Iterative Detection and ICI Cancellation for MISO-mode DVB-T2 System with Dual Carrier Frequency Offsets

  • Jeon, Eun-Sung;Seo, Jeong-Wook;Yang, Jang-Hoon;Paik, Jong-Ho;Kim, Dong-Ku
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.2
    • /
    • pp.702-721
    • /
    • 2012
  • In the DVB-T2 system with a multiple-input single-output (MISO) transmission mode, Alamouti coded orthogonal frequency division multiplexing (OFDM) signals are transmitted simultaneously from two spatially separated transmitters in a single frequency network (SFN). In such systems, each transmit-receive link may have a distinct carrier frequency offset (CFO) due to the Doppler shift and/or frequency mismatch between the local oscillators. Thus, the received signal experiences dual CFOs. This not only causes dual phase errors in desired data but also introduces inter-carrier interference (ICI), which cannot be removed completely by simply performing a CFO compensation. To overcome this problem, this paper proposes an iterative detection with dual phase errors compensation technique. In addition, we propose a successive-iterative ICI cancellation technique. This technique successively eliminates ICI in the initial iteration by exploiting pre-detected data pairs. Then, in subsequent iterations, it performs a fine interference cancellation using a priori information, iteratively fed back from the channel decoder. In contrast to previous works, the proposed techniques do not require estimates of dual CFOs. Their performances are evaluated via a full DVB-T2 simulator. Simulation results show that the DVB-T2 receiver equipped with the proposed dual phase errors compensation and the successive-iterative ICI cancellation techniques achieves almost the same performance as ideal dual CFOs-free systems, even for large dual CFOs.