• Title/Summary/Keyword: multiple-input multiple-output (MIMO) systems

Search Result 407, Processing Time 0.025 seconds

Feasibility of Interference Alignment for Reverse Duplex in MIMO Cellular Networks with One-side Base Cooperation (다중 안테나를 사용하는 단방향 기지국 협력 역 듀플렉스 셀룰러 네트워크의 간섭 정렬 타당성)

  • Kim, Kiyeon;Jeon, Sang-Woon;Yang, Janghoon;Kim, Dong Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.2
    • /
    • pp.273-284
    • /
    • 2015
  • The feasibility conditions of interference alignment (IA) are analyzed for reverse duplex systems, in which one cell operates as downlink (DL) while the other cell operates as uplink (UL) assuming one-sid base station (BS) cooperation. Under general multiple-input and multiple-output (MIMO) antenna configurations, a necessary condition and a sufficient condition for one-shot linear IA are established, i.e., linear IA without symbol or time extension. In several example networks, optimal sum degrees of freedom (DoF) is characterized by the derived necessary condition and sufficient condition. For some special class of networks, a sufficient condition is established in a more compact expression, which also yields the necessary and sufficient condition. Simulation results demonstrate that the proposed IA does not only achieve larger DoF but also significantly improves the sum rate in the practical signal-to-noise ratio (SNR) regime.

An LDC-based MU-MIMO System with Pre-coding for Interference Cancellation and Robust Reception (간섭 제거와 수신 성능 향상을 위한 전처리기법을 적용한 LDC기반의 다중 사용자 다중 입출력 시스템)

  • Park, Myung Chul;Jo, Bong-Gyun;Han, Dong Seog
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.17-25
    • /
    • 2013
  • In this paper, a coding algorithm is proposed for multi-user multi-input multi-output (MU-MIMO) systems to improve the reception performance in fading conditions without reducing the bandwidth efficiency. The space division multiple access (SDMA) scheme that is one of the commonly used for MU-MIMO systems is vulnerable to the fading. The space time block code (STBC) scheme that is used to overcome the fading has a disadvantage of reduced throughput. The proposed MU-MIMO system first encodes transmitted symbols by linear dispersion code (LDC) which is less vulnerable to the fading and increases the throughput in proportional to the number of transmit antennas. Then, the LDC coded symbols are pre-coded by the result of singular value decomposition (SVD) of the estimated channel gain. We evaluate the performance of the proposed scheme compared with the conventional algorithms by computer simulations.

Effect of transmit power on the optimal number of feedback bits in dense cellular networks (셀룰러 네트워크에서 송신파워가 최적의 피드백 정보량에 미치는 영향에 관한 연구)

  • Min, Moonsik;Na, Cheol-Hun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.464-466
    • /
    • 2018
  • In this paper, a dense cellular network is considered in which each base station equipped with multiple antennas simultaneously communicates with multiple single-antenna users. Based on limited feedback, each user feeds back its quantized channel state information (CSI) to its associated transmitter, and the transmitter broadcasts multiple data streams prepared for the scheduled users using a space-division multiple access scheme. As the amount of CSI is limited at the transmitter, the downlink throughput increases with the number feedback bits. However, the increased number of feedback bits requires the correspondingly increased amount of uplink resources. Thus, an appropriate balance between the downlink throughput and the uplink resource usage should be considered in realistic systems. A net spectral efficiency defined in this context is used in this paper, and the optimal number of feedback bits that maximizes the net spectral efficiency is analyzed. This paper particularly focuses on the case when the received signal power is much smaller than the noise power.

  • PDF

Extended-list SQRD-based Decoder for Improving BER Performance in V-BLAST Systems (V-BLAST 시스템에서의 BER 성능 향상을 위한 Extended-list SQRD-based Decoder)

  • PHAM Van-Su;LE Minh-Tuan;YOON Giwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.7
    • /
    • pp.1452-1457
    • /
    • 2005
  • In the QR Decomposition-based (QRD) decoding class, the system performance is sensitive to the error propagation. Thus, it is critical to correctly decode the previous layers. One apprach to desensitize the error propagation is to propose the optimal decoding order of layers. In this wort we propose a new extended-list Soled QRD-based (SQRD) decoding approach. In the proposed decoding scheme, the solution of the few first layers is extended as the list of promising possible solutions. By doing so, the diversity of the lowest layer is increased. As a result, the system performance is less sensitive to the error propagation than its counterparts. The proposed approach is verified by the computer simulation results.

CSI-based human activity recognition via lightweight compact convolutional transformers

  • Fahd Saad Abuhoureyah;Yan Chiew Wong;Malik Hasan Al-Taweel;Nihad Ibrahim Abdullah
    • Advances in Computational Design
    • /
    • v.9 no.3
    • /
    • pp.187-211
    • /
    • 2024
  • WiFi sensing integration enables non-intrusive and is utilized in applications like Human Activity Recognition (HAR) to leverage Multiple Input Multiple Output (MIMO) systems and Channel State Information (CSI) data for accurate signal monitoring in different fields, such as smart environments. The complexity of extracting relevant features from CSI data poses computational bottlenecks, hindering real-time recognition and limiting deployment on resource-constrained devices. The existing methods sacrifice accuracy for computational efficiency or vice versa, compromising the reliability of activity recognition within pervasive environments. The lightweight Compact Convolutional Transformer (CCT) algorithm proposed in this work offers a solution by streamlining the process of leveraging CSI data for activity recognition in such complex data. By leveraging the strengths of both CNNs and transformer models, the CCT algorithm achieves state-of-the-art accuracy on various benchmarks, emphasizing its excellence over traditional algorithms. The model matches convolutional networks' computational efficiency with transformers' modeling capabilities. The evaluation process of the proposed model utilizes self-collected dataset for CSI WiFi signals with few daily activities. The results demonstrate the improvement achieved by using CCT in real-time activity recognition, as well as the ability to operate on devices and networks with limited computational resources.

Power-efficiency Analysis of the MIMO-VLC System considering Dimming Control (조광제어를 고려한 MIMO-VLC 시스템의 전력 효율 분석)

  • Kim, Yong-Won;Lee, Byung-Jin;Lee, Byung-Hoon;Lee, Min-Jung;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.169-180
    • /
    • 2018
  • White light-emitting diodes (LEDs) are more economical than fluorescent lights, and provide high brightness, a high lifetime expectancy, and greater durability. As LEDs are closely connected with people's daily lives, dimming control of LED is an important component in providing energy savings and improving quality of life. In visible light communications systems using these LEDs, multiple input multiple output (MIMO) technology has attracted a lot of attention, in that it can attain the channel capacity in proportion to the number of antennas. This paper analyzes the power performance of three kinds of modulation in visible light communications (VLC) systems applied space-time block code (STBC) techniques. The modulation schemes are return-to-zero on-off keying (RZ-OOK), variable pulse position modulation (VPPM), and overlapping pulse position modulation (OPPM), and dimming control was applied. The power requirements and power consumption were used as metrics to compare the power efficiency in $2{\times}2$ STBC-VLC environments under the three kinds of modulation. We confirm that dimming control affects the communications performance of each modulation scheme. VPPM showed greater consumption among the three modulations, and OPPM showed energy savings comparable to VPPM.

Coded Layered Space-Time Transmission with Signal Space Diversity in OFDM Systems (신호 공간 다이버시티 기법을 이용한 OFDM 기반의 부호화된 시공간 전송기법)

  • Kim, Ji-Hoon;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.7C
    • /
    • pp.644-651
    • /
    • 2007
  • In multiple antenna systems, vertical Bell Labs Layered Space-Time (V-BLAST) systems enable very high throughput by nulling and cancelling at each layer detection. In this paper, we propose a V-BLAST system which combines with signal space diversity technique. The benefit of the signal space diversity is that we can obtain an additional gain without extra bandwidth and power expansion by applying inphase/quadrature interleaving and the constellation rotation. Through simulation results, it is shown that the performance of the proposed system is less than 0.5dB away from the ideal upper bound.

Power Allocation Algorithms for ZF-THP Sum Rate Optimization in Multi-user Multi-antenna Systems (ZF-THP를 이용한 다중 안테나 다중 사용자 시스템에서 전송률 합 최적화를 위한 전력 할당 알고리즘)

  • Lee, Wookbong;Song, Changick;Lee, Sangrim;Lee, Kilbom;Kwak, Jin Sam;Lee, Inkyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.9
    • /
    • pp.753-761
    • /
    • 2012
  • In this paper, we study a power allocation technique for Tomlinson-Harashima precoding (THP) in multi-user multiple input single output (MISO) downlink systems. In contrast to previous approaches, a mutual information based method is exploited for maximizing the sum rate of zero-forcing THP systems. Then, we propose a simple power allocation algorithm which assigns proper power level for modulo operated users. Simulation results show that the proposed scheme outperforms a conventional water-filling method, and it provides similar performance with near optimal method with much reduced complexity.

Adaptive and Robust Aeroelastic Control of Nonlinear Lifting Surfaces with Single/Multiple Control Surfaces: A Review

  • Wang, Z.;Behal, A.;Marzocca, P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.285-302
    • /
    • 2010
  • Active aeroelastic control is an emerging technology aimed at providing solutions to structural systems that under the action of aerodynamic loads are prone to instability and catastrophic failures, and to oscillations that can yield structural failure by fatigue. The purpose of the aeroelastic control among others is to alleviate and even suppress the vibrations appearing in the flight vehicle subcritical flight regimes, to expand its flight envelope by increasing the flutter speed, and to enhance the post-flutter behavior usually characterized by the presence of limit cycle oscillations. Recently adaptive and robust control strategies have demonstrated their superiority to classical feedback strategies. This review paper discusses the latest development on the topic by the authors. First, the available control techniques with focus on adaptive control schemes are reviewed, then the attention is focused on the advanced single-input and multi-input multi-output adaptive feedback control strategies developed for lifting surfaces operating at subsonic and supersonic flight speeds. A number of concepts involving various adaptive control methodologies, as well as results obtained with such controls are presented. Emphasis is placed on theoretical and numerical results obtained with the various control strategies.

Performance Analysis of D2D system Considering users' locations under the Overlay Convergent Networks of Cognitive Networking (인지기반 중첩 융합 네트워크에서 위치정보에 기반한 D2D 시스템의 성능분석)

  • Kim, Jeong-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.3-10
    • /
    • 2014
  • In this paper, the performances of the presented D2D (device-to-device) systems under the environment of the cognitive convergent overlay networks are evaluated based upon the locations of the D2D users' terminals, the power consumptions of the terminals and the reductions of the interference levels. As the capabilities of the users' terminals improve, the optimization of the system is crucial to the efficient utilization of the radio resources of the individual networks considering their mobility and the features of their networks. Users' mobility model is given for the performance evaluation of the D2D system. In this paper, the performances of the D2D systems are evaluated in terms of the performance index of the FER (frame error rate) employing multiantenna techniques (MIMO:multiple input multiple output) for the various network environments.