In this study, we propose a machine vision system with a high object recognition rate. By utilizing a multiple-exposure image sensing technique, the proposed deep learning-based machine vision system can cover a wide light intensity range without further learning processes on the various light intensity range. If the proposed machine vision system fails to recognize object features, the system operates in a multiple-exposure sensing mode and detects the target object that is blocked in the near dark or bright region. Furthermore, short- and long-exposure images from the multiple-exposure sensing mode are synthesized to obtain accurate object feature information. That results in the generation of a wide dynamic range of image information. Even with the object recognition resources for the deep learning process with a light intensity range of only 23 dB, the prototype machine vision system with the multiple-exposure imaging method demonstrated an object recognition performance with a light intensity range of up to 96 dB.
Various techniques have been proposed for detection and tracking of targets in order to develop a real-world computer vision system, e.g., visual surveillance systems, intelligent transport systems (ITSs), and so forth. Especially, the idea of distributed vision system is required to realize these techniques in a wide-spread area. In this paper, we develop a ubiquitous vision system for location-awareness of multiple targets. Here, each vision sensor that the system is composed of can perform exact segmentation for a target by color and motion information, and visual tracking for multiple targets in real-time. We construct the ubiquitous vision system as the multiagent system by regarding each vision sensor as the agent (the vision agent). Therefore, we solve matching problem for the identity of a target as handover by protocol-based approach. We propose the identified contract net (ICN) protocol for the approach. The ICN protocol not only is independent of the number of vision agents but also doesn't need calibration between vision agents. Therefore, the ICN protocol raises speed, scalability, and modularity of the system. We adapt the ICN protocol in our ubiquitous vision system that we construct in order to make an experiment. Our ubiquitous vision system shows us reliable results and the ICN protocol is successfully operated through several experiments.
It is important for advanced active safety systems and autonomous driving cars to get the accurate estimates of the nearby vehicles in order to increase their safety and performance. This paper proposes a sensor fusion method for radar and vision sensors to accurately estimate the state of the preceding vehicles. In particular, we performed a study on compensating for the lateral state error on automotive radar sensors by using a vision sensor. The proposed method is based on the Interactive Multiple Model(IMM) algorithm, which stochastically integrates the multiple Kalman Filters with the multiple models depending on lateral-compensation mode and radar-single sensor mode. In addition, a Probabilistic Data Association Filter(PDAF) is utilized as a data association method to improve the reliability of the estimates under a cluttered radar environment. A two-step correction method is used in the Kalman filter, which efficiently associates both the radar and vision measurements into single state estimates. Finally, the proposed method is validated through off-line simulations using measurements obtained from a field test in an actual road environment.
KSII Transactions on Internet and Information Systems (TIIS)
/
제8권11호
/
pp.4103-4117
/
2014
Image processing and computer vision algorithms are gaining larger concern in a variety of application areas such as robotics and man-machine interaction. Vision allows the development of flexible, intelligent, and less intrusive approaches than most of the other sensor systems. In this work, we determine the location and orientation of a mobile robot which is crucial for performing its tasks. In order to be able to operate in real time there is a need to speed up different vision routines. Therefore, we present and evaluate a method for introducing parallelism into the multiple non-overlapping camera pose estimation algorithm proposed in [1]. In this algorithm the problem has been solved in real time using multiple non-overlapping cameras and the Extended Kalman Filter (EKF). Four cameras arranged in two back-to-back pairs are put on the platform of a moving robot. An important benefit of using multiple cameras for robot pose estimation is the capability of resolving vision uncertainties such as the bas-relief ambiguity. The proposed method is based on algorithmic skeletons for low, medium and high levels of parallelization. The analysis shows that the use of a multiprocessor system enhances the system performance by about 87%. In addition, the proposed design is scalable, which is necaccery in this application where the number of features changes repeatedly.
In this paper, we present a mobile robot localization solution by using a Ubiquitous Vision System (UVS). The collective information gathered by multiple cameras that are strategically placed has many advantages. For example, aggregation of information from multiple viewpoints reduces the uncertainty about the robots' positions. We construct UVS as a multi-agent system by regarding each vision sensor as one vision agent (VA). Each VA performs target segmentation by color and motion information as well as visual tracking for multiple objects. Our modified identified contractnet (ICN) protocol is used for communication between VAs to coordinate multitask. This protocol raises scalability and modularity of thesystem because of independent number of VAs and needless calibration. Furthermore, the handover between VAs by using ICN is seamless. Experimental results show the robustness of the solution with respect to a widespread area. The performance in indoor environments shows the feasibility of the proposed solution in real-time.
In this study, we propose a new input device using vision technology for positioning of multiple DOFs. The input device is composed of multiple Tags on a transparent table and a vision camera below the table. Vision camera detects LEDs at the bottom of each Tag to derive information of the ID, position and orientation. The information are used to determine position and orientation of remote target DOFs. Our developed approach is very reliable and effective, especially when the corresponding DOFs are from many independent individuals. We show an application example with a SCARA robot to prove the flexibility and extendability.
Continuous research efforts have been made on acquiring location data on construction sites. As a result, GPS and RFID are increasingly employed on the site to track the location of equipment and materials. However, these systems are based on radio frequency technologies which require attaching tags on every target entity. Implementing the systems incurs time and costs for attaching/detaching/managing the tags or sensors. For this reason, efforts are currently being made to track construction entities using only cameras. Vision-based 3D tracking has been presented in a previous research work in which the location of construction manpower, vehicle, and materials were successfully tracked. However, the proposed system is still in its infancy and yet to be implemented on practical applications for two reasons. First, it does not involve entity matching across two views, and thus cannot be used for tracking multiple entities, simultaneously. Second, the use of a checker board in the camera calibration process entails a focus-related problem when the baseline is long and the target entities are located far from the cameras. This paper proposes a vision-based method to track multiple workers simultaneously. An entity matching procedure is added to acquire the matching pairs of the same entities across two views which is necessary for tracking multiple entities. Also, the proposed method simplified the calibration process by avoiding the use of a checkerboard, making it more adequate to the realistic deployment on construction sites.
Structured light vision system has been widely used in 3D surface profiling. Usually, it is composed of a camera and a laser which projects a line on the target. Calibration is necessary to acquire 3D information using structured light stripe vision system. Conventional calibration algorithms have found the pose of the camera and the equation of the stripe plane of the laser under the same coordinate system of the camera. Therefore, the 3D reconstruction is only possible under the camera frame. In most cases, this is sufficient to fulfill given tasks. However, they require multiple images which are acquired under different poses for calibration. In this paper, we propose a calibration algorithm that could work by using just one shot. Also, proposed algorithm could give 3D reconstruction under both the camera and laser frame. This would be done by using newly designed calibration structure which has multiple vertical planes on the ground plane. The ability to have 3D reconstruction under both the camera and laser frame would give more flexibility for its applications. Also, proposed algorithm gives an improvement in the accuracy of 3D reconstruction.
본 논문에서는 비젼 카메라와 다중 객체 추적 방법을 이용한 실시간 수질 감시 시스템을 제안하였다. 제안된 시스템은 기존의 센서 방식의 감시 시스템과 달리 비젼 카메라를 이용해 객체를 개별적으로 분석한다. 비젼 카메라를 이용한 시스템은 영상에서 개별 객체를 분리해 내는 방법과, 연속하는 두 프레임간의 상관관계에 의해서 다수의 객체를 추적하는 방법으로 구성된다. 실시간 처리를 위해 비모수 예측을 사용하여 배경 영상을 생성하고 이를 이용해 객체를 추출한다. 비모수 예측을 이용하면 연산량을 줄이는 동시에 비교적 정확하게 객체를 추출 할 수 있다. 다중 객체 추적 방법은 개별 객체가 움직이는 방향, 속도 및 가속도를 이용해 다음 움직임을 예측하고 이를 기반으로 추적을 수행하였다. 또한 추적 성공률을 향상시키기 위해 예외처리 알고리즘을 적용하였다. 다양한 환경에서 실험한 결과 제안한 시스템은 처리 시간이 짧고 정확하게 다중 객체를 추적할 수 있어 실시간 수질 감시 시스템에 사용이 가능함을 확인하였다.
This paper presents a multiple sensor system for rapid and high-precision coordinate data acquisition in the OMM (On-machine measurement) process. In this research, three sensors (touch probe, laser, and vision sensor) are integrated to obtain more accurate measuring results. The touch-type probe has high accuracy, but is time-consuming. Vision sensor can acquire many point data rapidly over a spatial range but its accuracy is less than other sensors. Also, it is not possible to acquire data for invisible areas. Laser sensor has medium accuracy and measuring speed among the sensors, and can acquire data for sharp or rounded edge and the features with very small holes and/or grooves. However, it has range- constraints to use because of its system structure. In this research, a new optimum sensor integration method for OMM is proposed by integrating the multiple-sensor to accomplish mote effective inspection planning. To verify the effectiveness of the proposed method, simulation and experimental works are performed, and the results are analyzed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.