• Title/Summary/Keyword: multiple threshold values

Search Result 66, Processing Time 0.024 seconds

Estimation of daily maximum air temperature using NOAA/AVHRR data (NOAA/AVHRR 자료를 이용한 일 최고기온 추정에 관한 연구)

  • 변민정;한영호;김영섭
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.291-296
    • /
    • 2003
  • This study estimated surface temperature by using split-window technique and NOAA/AVHRR data was used. For surface monitoring, cloud masking procedure was carried out using threshold algorithm. The daily maximum air temperature is estimated by multiple regression method using independent variables such as satellite-derived surface temperature, EDD, and latitude. When the EDD data added, the highest correlation shown. This indicates that EDD data is the necessary element for estimation of the daily maximum air temperature. We derived correlation and experience equation by three approaching method to estimate daily maximum air temperature. 1) non-considering landcover method as season, 2) considering landcover method as season, and 3) just method as landcover. The last approaching method shows the highest correlation. So cross-validation procedure was used in third method for validation of the estimated value. For all landcover type 5, the results using the cross-validation procedure show reasonable agreement with measured values(slope=0.97, intercept=-0.30, R$^2$=0.84, RMSE=4.24$^{\circ}C$). Also, for all landcover type 7, the results using the cross-validation procedure show reasonable agreement with measured values(slope=0.993, Intercept=0.062, R$^2$=0.84, RMSE=4.43$^{\circ}C$).

  • PDF

Wavelet based Fuzzy Integral System for 3D Face Recognition (퍼지적분을 이용한 웨이블릿 기반의 3차원 얼굴 인식)

  • Lee, Yeung-Hak;Shim, Jae-Chang
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.10
    • /
    • pp.616-626
    • /
    • 2008
  • The face shape extracted by the depth values has different appearance as the most important facial feature information and the face images decomposed into frequency subband are signified personal features in detail. In this paper, we develop a method for recognizing the range face images by combining the multiple frequency domains for each depth image and depth fusion using fuzzy integral. For the proposed approach, the first step tries to find the nose tip that has a protrusion shape on the face from the extracted face area. It is used as the reference point to normalize for orientated facial pose and extract multiple areas by the depth threshold values. In the second step, we adopt as features for the authentication problem the wavelet coefficient extracted from some wavelet subband to use feature information. The third step of approach concerns the application of eigenface and Linear Discriminant Analysis (LDA) method to reduce the dimension and classify. In the last step, the aggregation of the individual classifiers using the fuzzy integral is explained for extracted coefficient at each resolution level. In the experimental results, using the depth threshold value 60 (DT60) show the highest recognition rate among the regions, and the depth fusion method achieves 98.6% recognition rate, incase of fuzzy integral.

3D Face Recognition using Wavelet Transform Based on Fuzzy Clustering Algorithm (펴지 군집화 알고리즘 기반의 웨이블릿 변환을 이용한 3차원 얼굴 인식)

  • Lee, Yeung-Hak
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.11
    • /
    • pp.1501-1514
    • /
    • 2008
  • The face shape extracted by the depth values has different appearance as the most important facial information. The face images decomposed into frequency subband are signified personal features in detail. In this paper, we develop a method for recognizing the range face images by multiple frequency domains for each depth image using the modified fuzzy c-mean algorithm. For the proposed approach, the first step tries to find the nose tip that has a protrusion shape on the face from the extracted face area. And the second step takes into consideration of the orientated frontal posture to normalize. Multiple contour line areas which have a different shape for each person are extracted by the depth threshold values from the reference point, nose tip. And then, the frequency component extracted from the wavelet subband can be adopted as feature information for the authentication problems. The third step of approach concerns the application of eigenface to reduce the dimension. And the linear discriminant analysis (LDA) method to improve the classification ability between the similar features is adapted. In the last step, the individual classifiers using the modified fuzzy c-mean method based on the K-NN to initialize the membership degree is explained for extracted coefficient at each resolution level. In the experimental results, using the depth threshold value 60 (DT60) showed the highest recognition rate among the extracted regions, and the proposed classification method achieved 98.3% recognition rate, incase of fuzzy cluster.

  • PDF

3D Face Recognition in the Multiple-Contour Line Area Using Fuzzy Integral (얼굴의 등고선 영역을 이용한 퍼지적분 기반의 3차원 얼굴 인식)

  • Lee, Yeung-Hak
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.4
    • /
    • pp.423-433
    • /
    • 2008
  • The surface curvatures extracted from the face contain the most important personal facial information. In particular, the face shape using the depth information represents personal features in detail. In this paper, we develop a method for recognizing the range face images by combining the multiple face regions using fuzzy integral. For the proposed approach, the first step tries to find the nose tip that has a protrusion shape on the face from the extracted face area and has to take into consideration of the orientated frontal posture to normalize. Multiple areas are extracted by the depth threshold values from reference point, nose tip. And then, we calculate the curvature features: principal curvature, gaussian curvature, and mean curvature for each region. The second step of approach concerns the application of eigenface and Linear Discriminant Analysis(LDA) method to reduce the dimension and classify. In the last step, the aggregation of the individual classifiers using the fuzzy integral is explained for each region. In the experimental results, using the depth threshold value 40 (DT40) show the highest recognition rate among the regions, and the maximum curvature achieves 98% recognition rate, incase of fuzzy integral.

  • PDF

Multitoning Method Based on Arrangement of Ink Distribution for Smooth Tone Transition (부드러운 계조 변화를 위한 잉크 분포 조절 기반의 멀티토닝 방법)

  • Park, Tae-Yong;Park, Kee-Hyon;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.4 s.316
    • /
    • pp.17-25
    • /
    • 2007
  • Multilevel inkjet printer employs multiple ink droplets with variable dot size and/or different concentrations intended to preserve high fidelity color reproduction and the appearance of continuous tone. A variety of research efforts on multitoning techniques has progressed toward better image quality. However, banding artifacts appear due to the same dot distributions near the printable output levels. This results in discontinuity and visually unpleasing output, especially at the smooth tone transition region. In this paper, to reduce the banding artifacts, a multitoning method to arrange ink distribution by controlling the blending proportion of adjacent output pixels based on an improved threshold scaling function is proposed. Ink distributions across the banding regions are changed according to two factors of the threshold scaling function because these factors handle the blending point of adjacent output pixel. Therefore, 8 observers, subjectively investigated ink distributions around the printable output levels for a set of the improved threshold scaling function. For a threshold scaling function with the specific factor values, we can achieve smoother visual transition. In the experiment, the proposed method showed a reduction of banding artifacts in both u-ay and color image and represented better Performance of color reproduction.

Application of UAV-based RGB Images for the Growth Estimation of Vegetable Crops

  • Kim, Dong-Wook;Jung, Sang-Jin;Kwon, Young-Seok;Kim, Hak-Jin
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.45-45
    • /
    • 2017
  • On-site monitoring of vegetable growth parameters, such as leaf length, leaf area, and fresh weight, in an agricultural field can provide useful information for farmers to establish farm management strategies suitable for optimum production of vegetables. Unmanned Aerial Vehicles (UAVs) are currently gaining a growing interest for agricultural applications. This study reports on validation testing of previously developed vegetable growth estimation models based on UAV-based RGB images for white radish and Chinese cabbage. Specific objective was to investigate the potential of the UAV-based RGB camera system for effectively quantifying temporal and spatial variability in the growth status of white radish and Chinese cabbage in a field. RGB images were acquired based on an automated flight mission with a multi-rotor UAV equipped with a low-cost RGB camera while automatically tracking on a predefined path. The acquired images were initially geo-located based on the log data of flight information saved into the UAV, and then mosaicked using a commerical image processing software. Otsu threshold-based crop coverage and DSM-based crop height were used as two predictor variables of the previously developed multiple linear regression models to estimate growth parameters of vegetables. The predictive capabilities of the UAV sensing system for estimating the growth parameters of the two vegetables were evaluated quantitatively by comparing to ground truth data. There were highly linear relationships between the actual and estimated leaf lengths, widths, and fresh weights, showing coefficients of determination up to 0.7. However, there were differences in slope between the ground truth and estimated values lower than 0.5, thereby requiring the use of a site-specific normalization method.

  • PDF

Multiple Linkage Disequilibrium Mapping Methods to Validate Additive Quantitative Trait Loci in Korean Native Cattle (Hanwoo)

  • Li, Yi;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.7
    • /
    • pp.926-935
    • /
    • 2015
  • The efficiency of genome-wide association analysis (GWAS) depends on power of detection for quantitative trait loci (QTL) and precision for QTL mapping. In this study, three different strategies for GWAS were applied to detect QTL for carcass quality traits in the Korean cattle, Hanwoo; a linkage disequilibrium single locus regression method (LDRM), a combined linkage and linkage disequilibrium analysis (LDLA) and a $BayesC{\pi}$ approach. The phenotypes of 486 steers were collected for weaning weight (WWT), yearling weight (YWT), carcass weight (CWT), backfat thickness (BFT), longissimus dorsi muscle area, and marbling score (Marb). Also the genotype data for the steers and their sires were scored with the Illumina bovine 50K single nucleotide polymorphism (SNP) chips. For the two former GWAS methods, threshold values were set at false discovery rate <0.01 on a chromosome-wide level, while a cut-off threshold value was set in the latter model, such that the top five windows, each of which comprised 10 adjacent SNPs, were chosen with significant variation for the phenotype. Four major additive QTL from these three methods had high concordance found in 64.1 to 64.9Mb for Bos taurus autosome (BTA) 7 for WWT, 24.3 to 25.4Mb for BTA14 for CWT, 0.5 to 1.5Mb for BTA6 for BFT and 26.3 to 33.4Mb for BTA29 for BFT. Several candidate genes (i.e. glutamate receptor, ionotropic, ampa 1 [GRIA1], family with sequence similarity 110, member B [FAM110B], and thymocyte selection-associated high mobility group box [TOX]) may be identified close to these QTL. Our result suggests that the use of different linkage disequilibrium mapping approaches can provide more reliable chromosome regions to further pinpoint DNA makers or causative genes in these regions.

An Implementation Strategy for the Physical Security Threat Meter Using Information Technology (정보통신 기술을 이용한 물리보안 위협 계수기 구현 전략)

  • Kang, Koo-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.7
    • /
    • pp.47-57
    • /
    • 2014
  • In order to publicly notify the information security (Internet or Cyber) threat level, the security companies have developed the Threat Meters. As the physical security devices are getting more intelligent and can be monitored and managed through networks, we propose a physical security threat meter (PSTM) to determine the current threat level of physical security; that is a very similar compared with the one of information security. For this purpose, we investigate and prioritize the physical security events, and consider the impact of temporal correlation among multiple security events. We also present how to determine the threshold values of threat levels, and then propose a practical PSTM using the threshold based decision. In particular, we show that the proposed scheme is fully implementable through showing the block diagram in detail and the whole implementation processes with the access controller and CCTV+video analyzer system. Finally the simulation results show that the proposed PSTM works perfectly under some test scenarios.

Diagnosis of Pulmonary Arterial Hypertension in Children by Using Cardiac Computed Tomography

  • Shyh-Jye Chen;Jou-Hsuan Huang;Wen-Jeng Lee;Ming-Tai Lin;Yih-Sharng Chen;Jou-Kou Wang
    • Korean Journal of Radiology
    • /
    • v.20 no.6
    • /
    • pp.976-984
    • /
    • 2019
  • Objective: To establish diagnostic criteria for pulmonary arterial hypertension (PAH) in children by using parameters obtained through noninvasive cardiac computed tomography (CCT). Materials and Methods: We retrospectively measured parameters from CCT images of children from a single institution in a multiple stepwise process. A total of 208 children with mean age of 10.5 years (range: 4 days-18.9 years) were assessed. The variables were classified into three groups: the great arteries; the ventricular walls; and the bilateral ventricular cavities. The relationship between the parameters obtained from the CCT images and mean pulmonary arterial pressure (mPAP) was tested and adjusted by the children's body size. Reference curves for the pulmonary trunk diameter (PTD) and ratio of diameter of pulmonary trunk to ascending aorta (rPTAo) of children with CCT images of normal hearts, adjusted for height, were plotted. Threshold lines were established on the reference curves. Results: PTD and rPTAo on the CCT images were significantly positively correlated with mPAP (r > 0.85, p < 0.01). Height was the body size parameter most correlated with PTD (r = 0.91, p < 0.01) and rPTAo (r = -0.69, p < 0.01). On the basis of the threshold lines on the reference curves, PTD and rPTAo both showed 88.9% sensitivity for PAH diagnosis, with negative predictive values of 93.3% and 92.9%, respectively. Conclusion: PTD and rPTAo measured from CCT images were significantly correlated with mPAP in children. Reference curves and the formula of PTD and rPTAo adjusted for height could be practical for diagnosing PAH in children.

HisCoM-PCA: software for hierarchical structural component analysis for pathway analysis based using principal component analysis

  • Jiang, Nan;Lee, Sungyoung;Park, Taesung
    • Genomics & Informatics
    • /
    • v.18 no.1
    • /
    • pp.11.1-11.3
    • /
    • 2020
  • In genome-wide association studies, pathway-based analysis has been widely performed to enhance interpretation of single-nucleotide polymorphism association results. We proposed a novel method of hierarchical structural component model (HisCoM) for pathway analysis of common variants (HisCoM for pathway analysis of common variants [HisCoM-PCA]) which was used to identify pathways associated with traits. HisCoM-PCA is based on principal component analysis (PCA) for dimensional reduction of single nucleotide polymorphisms in each gene, and the HisCoM for pathway analysis. In this study, we developed a HisCoM-PCA software for the hierarchical pathway analysis of common variants. HisCoM-PCA software has several features. Various principle component scores selection criteria in PCA step can be specified by users who want to summarize common variants at each gene-level by different threshold values. In addition, multiple public pathway databases and customized pathway information can be used to perform pathway analysis. We expect that HisCoM-PCA software will be useful for users to perform powerful pathway analysis.