• Title/Summary/Keyword: multiple target

Search Result 1,489, Processing Time 0.032 seconds

Target classification in indoor environments using multiple reflections of a SONAR sensor (초음파의 다중반사 특성을 이용한 실내공간에서의 목표물 인식에 관한 연구)

  • 류동연;박성기;권인소
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1738-1741
    • /
    • 1997
  • This paper addresses the issue fo target classification and localization with a SONAR for mobiler robot indoor navigation. In particular, multiple refetions of SONAR sound are used actively and interntionally. As for the SONAR sensor, the multiple reflection has been generally considered as one of the noisy phenomena, which is inevitable in the indoor environments. However, these multiple reflections can be a clue for classifying and localizing targets in the indoor environment if those can be controlled and used well. This paper develops a new SONAR sensor module with a reflection plane which can actively create the multiple refection. This paper also intends to suggest a new target classification emthod which uses the multiple refectiions. We approximate the world as being two dimensional and assume that the targets consisting of the indoor environment are pland, corner, and edge. Multiple reflection paths of an acoustic bean by a SONAR are analyzed, by simulations and the patterns of the TOPs (Time Of Flight) and angles of multiple reflections from each target are also analyzed. In addition, a new algorithm for target classification and localization is proposed.

  • PDF

Multiple Target Tracking using Normalized Rayleigh Likelihood of Amplitude Information of Target (Normalized Rayleigh Likelihood를 활용한 표적신호세기정보 적용 다중표적추적 기술)

  • Kim, Sujin;Jung, Younghun;Kim, Seongjoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.474-481
    • /
    • 2017
  • This paper presents a multiple target tracking system using Normalized Rayleigh likelihood of amplitude information of target. Although many studies of Radar systems using amplitude information have been studied, they are focused on single target tracking. This paper proposes the multiple target tracking using amplitude information as well as kinematic information from Radar sensor. The amplitude information are applied in generating the association probability of joint probabilistic data association(JPDA) algorithm through the normalized Rayleigh likelihood. It is verified that the proposed system can enhance the track maintenance and tracking accuracy, especially, in the target crossing case.

Design of target state estimator and predictor using multiple model method (다중모델기법을 이용한 표적 상태추정 및 예측기 설계연구)

  • Jung, Sang-Geun;Lee, Sang-Gook;Yoo, Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.478-481
    • /
    • 1996
  • Tracking a target of versatile maneuver recently demands a stable adaptation of tracker, and the multiple model techniques are being developed because of its ability to produce useful information of target maneuver. This paper presents the way to apply the multiple model method in a moving-target and moving-platform scenario, and the estimation and prediction results better than those of single Kalman filter.

  • PDF

Compressed Sensing-based Multiple-target Tracking Algorithm for Ad Hoc Camera Sensor Networks

  • Lu, Xu;Cheng, Lianglun;Liu, Jun;Chen, Rongjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1287-1300
    • /
    • 2018
  • Target-tracking algorithm based on ad hoc camera sensor networks (ACSNs) utilizes the distributed observation capability of nodes to achieve accurate target tracking. A compressed sensing-based multiple-target tracking algorithm (CSMTTA) for ACSNs is proposed in this work based on the study of camera node observation projection model and compressed sensing model. The proposed algorithm includes reconfiguration of observed signals and evaluation of target locations. It reconfigures observed signals by solving the convex optimization of L1-norm least and forecasts node group to evaluate a target location by the motion features of the target. Simulation results show that CSMTTA can recover the subtracted observation information accurately under the condition of sparse sampling to a high target-tracking accuracy and accomplish the distributed tracking task of multiple mobile targets.

Visual Search Models for Multiple Targets and Optimal Stopping Time (다수표적의 시각적 탐색을 위한 탐색능력 모델과 최적 탐색정지 시점)

  • Hong, Seung-Kweon;Park, Seikwon;Ryu, Seung Wan
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.2
    • /
    • pp.165-171
    • /
    • 2003
  • Visual search in an unstructured search field is a fruitful research area for computational modeling. Search models that describe relationship between search time and probability of target detection have been used for prediction of human search performance and provision of ideal goals for search training. Until recently, however, most of models were focused on detecting a single target in a search field, although, in practice, a search field includes multiple targets and search models for multiple targets may differ from search models for a single target. This study proposed a random search model for multiple targets, generalizing a random search model for a single target which is the most typical search model. To test this model, human search data were collected and compared with the model. This model well predicted human performance in visual search for multiple targets. This paper also proposed how to determine optimal stopping time in multiple-target search.

A Study of Automatic Multi-Target Detection and Tracking Algorithm using Highest Probability Data Association in a Cluttered Environment (클러터가 존재하는 환경에서의 HPDA를 이용한 다중 표적 자동 탐지 및 추적 알고리듬 연구)

  • Kim, Da-Soul;Song, Taek-Lyul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1826-1835
    • /
    • 2007
  • In this paper, we present a new approach for automatic detection and tracking for multiple targets. We combine a highest probability data association(HPDA) algorithm for target detection with a particle filter for multiple target tracking. The proposed approach evaluates the probabilities of one-to-one assignments of measurement-to-track and the measurement with the highest probability is selected to be target- originated, and the measurement is used for probabilistic weight update of particle filtering. The performance of the proposed algorithm for target tracking in clutter is compared with the existing clustering algorithm and the sequential monte carlo method for probability hypothesis density(SMC PHD) algorithm for multi-target detection and tracking. Computer simulation studies demonstrate that the HPDA algorithm is robust in performing automatic detection and tracking for multiple targets even though the environment is hostile in terms of high clutter density and low target detection probability.

Prediction of Mammalian MicroRNA Targets - Comparative Genomics Approach with Longer 3' UTR Databases

  • Nam, Seungyoon;Kim, Young-Kook;Kim, Pora;Kim, V. Narry;Shin, Seokmin;Lee, Sanghyuk
    • Genomics & Informatics
    • /
    • v.3 no.3
    • /
    • pp.53-62
    • /
    • 2005
  • MicroRNAs play an important role in regulating gene expression, but their target identification is a difficult task due to their short length and imperfect complementarity. Burge and coworkers developed a program called TargetScan that allowed imperfect complementarity and established a procedure favoring targets with multiple binding sites conserved in multiple organisms. We improved their algorithm in two major aspects - (i) using well-defined UTR (untranslated region) database, (ii) examining the extent of conservation inside the 3' UTR specifically. Average length in our UTR database, based on the ECgene annotation, is more than twice longer than the Ensembl. Then, TargetScan was used to identify putative binding sites. The extent of conservation varies significantly inside the 3' UTR. We used the 'tight' tracks in the UCSC genome browser to select the conserved binding sites in multiple species. By combining the longer 3' UTR data, TargetScan, and tightly conserved blocks of genomic DNA, we identified 107 putative target genes with multiple binding sites conserved in multiple species, of which 85 putative targets are novel.

Splitting Decision Tree Nodes with Multiple Target Variables (의사결정나무에서 다중 목표변수를 고려한)

  • 김성준
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.243-246
    • /
    • 2003
  • Data mining is a process of discovering useful patterns for decision making from an amount of data. It has recently received much attention in a wide range of business and engineering fields Classifying a group into subgroups is one of the most important subjects in data mining Tree-based methods, known as decision trees, provide an efficient way to finding classification models. The primary concern in tree learning is to minimize a node impurity, which is evaluated using a target variable in the data set. However, there are situations where multiple target variables should be taken into account, for example, such as manufacturing process monitoring, marketing science, and clinical and health analysis. The purpose of this article is to present several methods for measuring the node impurity, which are applicable to data sets with multiple target variables. For illustrations, numerical examples are given with discussion.

  • PDF

Predicting Human Performance of Multiple-Target Search Using a Visual Lobe (비쥬얼 롭을 사용한 다수표적 탐색의 수행도 예측)

  • Hong, Seung-Kweon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.55-62
    • /
    • 2009
  • This study is concerned with predicting human search performance using a visual lobe. The most previous studies on human performance in visual search have been limited to a single-target search. This study extended the visual search research to multiple-target search including targets of different types as well as targets of same types. A model for predicting visual search performance was proposed and the model was validated by human search data. Additionally, this study found that human subjects always did not use a constant ratio of the whole visual lobe size for each type of targets in visual search process. The more conspicuous the target is, the more ratio of the whole visual lobe size human subjects use. The model that can predict human performance in multiple-target search may facilitate visual inspection plan in manufacturing.

3-D Multiple-Input Multiple-Output Interferometric ISAR Imaging (3차원 Multiple-Input Multiple-Output 간섭계 ISAR 영상형성기법)

  • Kang, Byung-Soo;Bae, Ji-Hoon;Yang, Eun-Jung;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.6
    • /
    • pp.564-571
    • /
    • 2015
  • In this paper, we propose a multiple-input, multiple-output(MIMO) interferometric radar network system to generate three-dimensional (3-D) MIMO interferometric inverse synthetic aperture radar(InISAR) image. In the MIMO interferometric radar network system, the MIMO InISAR image can be formed by an incoherent summation of multiple bistatic InISAR images that show 3-D scatterers of a target observed at different bistatic interfermetric configurations, respectively. Because bistatic-sccattering physics of a target at different viewpoints are visible in the 3-D MIMO InISAR image, it can provide various scatterering physics properties of a target, and can be used for target classification as a useful feature vector. Simulations validate that our proposed method successfully finds locations of scatterers of a target in MIMO radar interferometric network system.